当前位置: X-MOL 学术Algebra Number Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unipotent ℓ-blocks for simply connected p-adic groups
Algebra & Number Theory ( IF 0.9 ) Pub Date : 2023-09-09 , DOI: 10.2140/ant.2023.17.1533
Thomas Lanard

Let F be a nonarchimedean local field and G the F-points of a connected simply connected reductive group over F. We study the unipotent -blocks of G, for p. To that end, we introduce the notion of (d,1)-series for finite reductive groups. These series form a partition of the irreducible representations and are defined using Harish-Chandra theory and d-Harish-Chandra theory. The -blocks are then constructed using these (d,1)-series, with d the order of q modulo , and consistent systems of idempotents on the Bruhat–Tits building of G. We also describe the stable -block decomposition of the depth zero category of an unramified classical group.



中文翻译:

用于简单连接的 p-adic 群的单能 ℓ-块

F是一个非阿基米德局部场并且GF- 连接的简单连接的还原基团的点F。我们研究单能- 块G, 为了p。为此,我们引入以下概念:d,1- 有限还原群的级数。这些级数形成了不可约表示的划分,并使用 Harish-Chandra 理论和定义d-哈里什-钱德拉理论。这-然后使用这些构建块d,1-系列,与d的顺序q模数,以及 Bruhat-Tits 构建上的一致幂等系统G。我们还描述了稳定的-无分支经典群的深度零范畴的分块分解。

更新日期:2023-09-09
down
wechat
bug