Algebra & Number Theory ( IF 0.9 ) Pub Date : 2023-09-09 , DOI: 10.2140/ant.2023.17.1533 Thomas Lanard
Let be a nonarchimedean local field and the -points of a connected simply connected reductive group over . We study the unipotent -blocks of , for . To that end, we introduce the notion of -series for finite reductive groups. These series form a partition of the irreducible representations and are defined using Harish-Chandra theory and -Harish-Chandra theory. The -blocks are then constructed using these -series, with the order of modulo , and consistent systems of idempotents on the Bruhat–Tits building of . We also describe the stable -block decomposition of the depth zero category of an unramified classical group.
中文翻译:
用于简单连接的 p-adic 群的单能 ℓ-块
让是一个非阿基米德局部场并且这- 连接的简单连接的还原基团的点。我们研究单能- 块, 为了。为此,我们引入以下概念:- 有限还原群的级数。这些级数形成了不可约表示的划分,并使用 Harish-Chandra 理论和定义-哈里什-钱德拉理论。这-然后使用这些构建块-系列,与的顺序模数,以及 Bruhat-Tits 构建上的一致幂等系统。我们还描述了稳定的-无分支经典群的深度零范畴的分块分解。