Algebra & Number Theory ( IF 0.9 ) Pub Date : 2023-09-09 , DOI: 10.2140/ant.2023.17.1595 Alexander Merkurjev , Alexander Vishik
We classify additive operations in connective K-theory with various torsion-free coefficients. We discover that the answer for the integral case requires understanding of the case. Moreover, although integral additive operations are topologically generated by Adams operations, these are not reduced to infinite linear combinations of the latter ones. We describe a topological basis for stable operations and relate it to a basis of stable operations in graded K-theory. We classify multiplicative operations in both theories and show that homogeneous additive stable operations with -coefficients are topologically generated by stable multiplicative operations. This is not true for integral operations.
中文翻译:
联结 K 理论中的运算
我们用各种无扭系数对联结 K 理论中的加性运算进行分类。我们发现积分情况的答案需要理解案件。此外,虽然积分加法运算是由 Adams 运算在拓扑上生成的,但它们并没有简化为后者的无限线性组合。我们描述了稳定运行的拓扑基础,并将其与分级 K 理论中的稳定运行基础联系起来。我们对两种理论中的乘法运算进行分类,并表明齐次加法稳定运算具有-系数是通过稳定的乘法运算拓扑生成的。对于积分运算则不然。