当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Unravelling the Superior Photoelectrochemical Water Oxidation Performance of the Al-Incorporated CoOOH Cocatalyst-Loaded BiVO4 Photoanode
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2023-09-07 , DOI: 10.1021/acssuschemeng.3c03520 Antonysamy Soundarya Mary 1, 2 , Chinnan Murugan 1, 2 , Palanichamy Murugan 2, 3 , Alagarsamy Pandikumar 1, 2
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2023-09-07 , DOI: 10.1021/acssuschemeng.3c03520 Antonysamy Soundarya Mary 1, 2 , Chinnan Murugan 1, 2 , Palanichamy Murugan 2, 3 , Alagarsamy Pandikumar 1, 2
Affiliation
In photoelectrochemical (PEC) water splitting, the development of a highly efficient photoanode is a crucial part. BiVO4 is one of the leading photoanode materials, but its efficiency usually suffers from slow surface water oxidation kinetics and a higher charge recombination process. The loading of the oxygen evolution cocatalyst with a high electrocatalytic activity is an effective method for avoiding these issues in BiVO4, which enhances the consumption of holes from the BiVO4 surface for water oxidation. With this connection, here the Al-doped CoOOH was loaded over the BiVO4 surface, which facilitates the water oxidation kinetics. The 15 mol % Al-doped CoOOH cocatalyst-incorporated BiVO4 photoanode delivered a high photocurrent density of 3.02 mA cm–2, which was ∼2.8-fold higher than that of BiVO4 (1.06 mA cm–2) and ∼1.7-fold higher than that of BiVO4/CoOOH. The BiVO4/Al-CoOOH (15%) electrode displays an applied bias photon-to-current efficiency (ABPE) of 0.49% which is higher than those of BiVO4 and BiVO4/CoOOH, and it shows the transient decay time value of 1.83 s, which is ∼2.3 and ∼0.7-fold higher than those of BiVO4 and BiVO4/CoOOH; besides, the BiVO4/Al-CoOOH (15%) electrode utilizes 55% of the photogenerated holes for the water oxidation process which is 2.9-fold higher than that of BiVO4. Moreover, the BiVO4/Al-CoOOH electrode delivers a higher Cdl (99 μF cm–2), which is ∼1.4 and ∼2.2-fold higher than those of BiVO4/CoOOH (69 μF cm–2) and BiVO4 electrodes (44.5 μF cm–2), respectively. The first-principles calculations revealed that Al-CoOOH requires a lower overpotential (3.53 V) than CoOOH (4.29 V), and the introduction minimum amount of Al species could stabilize the CoOOH, thus enhancing the PEC performance of BiVO4.
中文翻译:
揭示掺铝 CoOOH 负载 BiVO4 光阳极的卓越光电化学水氧化性能
在光电化学(PEC)水分解中,高效光电阳极的开发是至关重要的部分。BiVO 4是领先的光阳极材料之一,但其效率通常受到缓慢的表面水氧化动力学和较高的电荷复合过程的影响。负载具有高电催化活性的析氧助催化剂是避免BiVO 4中这些问题的有效方法,它增加了BiVO 4表面用于水氧化的空穴的消耗。通过这种连接,这里将掺铝的CoOOH负载在BiVO 4表面上,这促进了水氧化动力学。15 mol% Al 掺杂 CoOOH 助催化剂掺入 BiVO 4光阳极提供3.02 mA cm –2的高光电流密度,比BiVO 4 (1.06 mA cm –2 )高约2.8倍,比BiVO 4 /CoOOH高约1.7倍。BiVO 4 /Al-CoOOH (15%) 电极的外加偏压光子电流效率 (ABPE) 为 0.49%,高于 BiVO 4和BiVO 4 /CoOOH,并且显示瞬态衰减时间值1.83 s,比 BiVO 4和 BiVO 4 /CoOOH高约 2.3 倍和约 0.7 倍;此外,BiVO 4/Al-CoOOH (15%)电极利用55%的光生空穴进行水氧化过程,比BiVO 4高2.9倍。此外,BiVO 4 /Al-CoOOH电极具有更高的C dl (99 μF cm –2 ),比BiVO 4 /CoOOH (69 μF cm –2 )和BiVO 4高约1.4和约2.2倍电极(44.5 μF cm –2)。第一性原理计算表明,Al-CoOOH需要比CoOOH(4.29 V)更低的过电势(3.53 V),并且引入最少量的Al物种可以稳定CoOOH,从而增强BiVO 4 的PEC性能。
更新日期:2023-09-07
中文翻译:
揭示掺铝 CoOOH 负载 BiVO4 光阳极的卓越光电化学水氧化性能
在光电化学(PEC)水分解中,高效光电阳极的开发是至关重要的部分。BiVO 4是领先的光阳极材料之一,但其效率通常受到缓慢的表面水氧化动力学和较高的电荷复合过程的影响。负载具有高电催化活性的析氧助催化剂是避免BiVO 4中这些问题的有效方法,它增加了BiVO 4表面用于水氧化的空穴的消耗。通过这种连接,这里将掺铝的CoOOH负载在BiVO 4表面上,这促进了水氧化动力学。15 mol% Al 掺杂 CoOOH 助催化剂掺入 BiVO 4光阳极提供3.02 mA cm –2的高光电流密度,比BiVO 4 (1.06 mA cm –2 )高约2.8倍,比BiVO 4 /CoOOH高约1.7倍。BiVO 4 /Al-CoOOH (15%) 电极的外加偏压光子电流效率 (ABPE) 为 0.49%,高于 BiVO 4和BiVO 4 /CoOOH,并且显示瞬态衰减时间值1.83 s,比 BiVO 4和 BiVO 4 /CoOOH高约 2.3 倍和约 0.7 倍;此外,BiVO 4/Al-CoOOH (15%)电极利用55%的光生空穴进行水氧化过程,比BiVO 4高2.9倍。此外,BiVO 4 /Al-CoOOH电极具有更高的C dl (99 μF cm –2 ),比BiVO 4 /CoOOH (69 μF cm –2 )和BiVO 4高约1.4和约2.2倍电极(44.5 μF cm –2)。第一性原理计算表明,Al-CoOOH需要比CoOOH(4.29 V)更低的过电势(3.53 V),并且引入最少量的Al物种可以稳定CoOOH,从而增强BiVO 4 的PEC性能。