Nano Today ( IF 13.2 ) Pub Date : 2023-09-06 , DOI: 10.1016/j.nantod.2023.101981 Man Wang , Chunzheng Yang , Mengyu Chang , Yulin Xie , Guoqing Zhu , Yanrong Qian , Pan Zheng , Qianqian Sun , Jun Lin , Chunxia Li
Single-atom nanozymes (SAzyme) have shown great promise in the area of anti-tumor therapy due to their ultra-high atom utilization efficiency. However, the therapeutic effect is far from satisfactory because of cunning cancer cell's self-protective autophagy. Herein, to solve this dilemma, we design a large-pore mesoporous Fe SAzyme loaded with macromolecular melittin pro-peptide to form Fe SAzyme@melittin pro-peptide (FePM) nanobee. When the FePM enter cells through endocytosis and are entrapped in endo/lysosomes, Fe SAzyme with glutathione oxidase (GSHOx), peroxidase (POD) and oxidase (OXD) mimicking activities can trigger collaborative CDT and ferroptosis by provoking a GSH depletion-enhanced ROS storm. Additionally, the strong absorption ability in the near-infrared II region endows Fe SAzyme with excellent PTT performance (42.1%). More importantly, the non-toxic melittin pro-peptide can be activated to membrane-lytic active melittin by overexpressed legumain in the lysosomes of cancer cells. Activated melittin then disrupts lysosomes, in this case inhibiting autophagy by reducing the formation of autolysosomes. Therefore, FePM nanobee can effectively damage cytoplasmic components to induce cancer cells death by synergistic ferroptosis, CDT and PTT. This study sheds light on the first example of large-pore mesoporous SAzyme for autophagy inhibition-enhanced multimodal synergistic antitumor therapy.
中文翻译:
基于单原子纳米酶的纳米蜂载体用于自噬抑制增强协同癌症治疗
单原子纳米酶(SAzyme)由于其超高的原子利用效率,在抗肿瘤治疗领域显示出巨大的前景。然而,由于狡猾的癌细胞自我保护性自噬,治疗效果远不能令人满意。为了解决这一困境,我们设计了一种大孔介孔Fe SAzyme,负载大分子蜂毒肽前肽,形成Fe SAzyme@蜂毒肽前肽(FePM)纳米蜂。当 FePM 通过内吞作用进入细胞并被内吞/溶酶体捕获时,Fe SAzyme 与谷胱甘肽氧化酶(GSHOx)、过氧化物酶 (POD) 和氧化酶 (OXD) 模拟活性可以通过激发 GSH 消耗增强的ROS来触发协同 CDT 和铁死亡风暴。此外,近红外II区的强吸收能力赋予Fe SAzyme优异的PTT性能(42.1%)。更重要的是,无毒的蜂毒肽前肽可以被癌细胞溶酶体中过度表达的legumain激活为具有膜溶解活性的蜂毒肽。然后,激活的蜂毒肽会破坏溶酶体,在这种情况下,通过减少自溶酶体的形成来抑制自噬。因此,FePM纳米蜂可以通过协同铁死亡、CDT和PTT有效地损伤细胞质成分,从而诱导癌细胞死亡。这项研究揭示了大孔介孔 SAzyme 用于自噬抑制增强多模式协同抗肿瘤治疗的第一个例子。