当前位置: X-MOL 学术J. Energy Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boosted sodium ion storage performance in MnO2: Understanding the bond angle-mediated orbital overlap in MnO6 units for fast charge transfer
Journal of Energy Chemistry ( IF 14.0 ) Pub Date : 2023-09-06 , DOI: 10.1016/j.jechem.2023.08.044
Jinrui Wang , Zishan Hou , Xia Liu , Shiyu Wang , Shuyun Yao , Yebo Yao , Dewei Wang , Xueying Gao , Huiying Zhang , Zheng Tang , Yuanming Liu , Kaiqi Nie , Jiangzhou Xie , Zhiyu Yang , Yi-Ming Yan

Symmetric six oxygen-coordinated Mn structural units (MnO6) in MnO2 with small Mn–O orbital overlap hamper electron transfer rates during energy storage. Herein, we report a novel bond angle modulation strategy to manipulate Mn–O orbital overlap in MnO2 through the construction of Mn vacancies (MnO2-VMn), aiming at expediting electron transfer, and thus enhancing energy storage performance. Both experimental and theoretical results disclose that the amplification of Mn–O–Mn bond angles exclusively augments the Mn (dx2-y2)-O (py) orbital overlap and triggers the electron redistribution in MnO2-VMn, inducing an augmented Mn dx2-y2 electron occupation. This heightened presence of active electrons in the Mn dx2-y2 orbital paves the way for accelerating electron transfer and ion transfer in MnO2-VMn. Notably, MnO2-VMn delivers an improved specific capacitance of 425 F g−1 at 1 A g−1 and a superior rate capacity of 265 F g−1 at 20 A g−1. Furthermore, an asymmetric supercapacitor (MnO2-VMn//AC ASC) was fabricated, exhibiting a high energy density of 64.3 Wh kg−1 at a power density of 1000 W kg−1. Furthermore, theoretical insights uncover the profound implications of metal–oxygen–metal bond angle regulation on interatomic orbital overlap modulation. These revelations illuminate pathways for the design of advanced energy storage materials.



中文翻译:

提高 MnO2 中的钠离子存储性能:了解 MnO6 单元中键角介导的轨道重叠以实现快速电荷转移

MnO 2中对称的六个氧配位Mn结构单元(MnO 6 )具有小的Mn-O轨道重叠,阻碍了能量存储期间的电子转移速率。在此,我们报告了一种新颖的键角调制策略,通过构建Mn空位(MnO 2 -V Mn )来操纵MnO 2中的Mn-O轨道重叠,旨在加速电子转移,从而提高储能性能。实验和理论结果都表明,Mn-O-Mn 键角的放大专门增强了 Mn ( d x 2 - y 2 )-O ( p y) 轨道重叠并触发 MnO 2 -V Mn中的电子重新分布,从而诱导增强的 Mn d x 2 - y 2电子占据。Mn d x 2 - y 2轨道中活性电子的增加为加速MnO 2 -V Mn中的电子转移和离子转移铺平了道路。值得注意的是,MnO 2 -V Mn在 1 A g -1下提供了 425 F g -1的改进比电容,在 20 A g -1下提供了 265 F g -1的优异倍率容量。此外,制备了非对称超级电容器(MnO 2 -V Mn //AC ASC),在1000 W kg -1的功率密度下表现出64.3 Wh kg -1的高能量密度。此外,理论见解揭示了金属-氧-金属键角调节对原子间轨道重叠调制的深远影响。这些启示阐明了先进储能材料的设计途径。

更新日期:2023-09-06
down
wechat
bug