当前位置:
X-MOL 学术
›
MIS Quarterly
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
ROLEX: A Novel Method for Interpretable Machine Learning Using Robust Local Explanations
MIS Quarterly ( IF 7.0 ) Pub Date : 2023-09-01 , DOI: 10.25300/misq/2022/17141 Buomsoo (Raymond) Kim , Karthik Srinivasan , Sung Hye Kong , Jung Hee Kim , Chan Soo Shin , Sudha Ram
MIS Quarterly ( IF 7.0 ) Pub Date : 2023-09-01 , DOI: 10.25300/misq/2022/17141 Buomsoo (Raymond) Kim , Karthik Srinivasan , Sung Hye Kong , Jung Hee Kim , Chan Soo Shin , Sudha Ram
Recent developments in big data technologies are revolutionizing the field of healthcare predictive analytics (HPA), enabling researchers to explore challenging problems using complex prediction models. Nevertheless, healthcare practitioners are reluctant to adopt those models as they are less transparent and accountable due to their black-box structure. We believe that instance-level, or local, explanations enhance patient safety and foster trust by enabling patient-level interpretations and medical knowledge discovery. Therefore, we propose the RObust Local EXplanations (ROLEX) method to develop robust, instance-level explanations for HPA models in this study. ROLEX adapts state-of-the-art methods and ameliorates their shortcomings in explaining individual-level predictions made by black-box machine learning models. Our analysis with a large real-world dataset related to a prevalent medical condition called fragility fracture and two publicly available healthcare datasets reveals that ROLEX outperforms widely accepted benchmark methods in terms of local faithfulness of explanations. In addition, ROLEX is more robust since it does not rely on extensive hyperparameter tuning or heuristic algorithms. Explanations generated by ROLEX, along with the prototype user interface presented in this study, have the potential to promote personalized care and precision medicine by providing patient-level interpretations and novel insights. We discuss the theoretical implications of our study in healthcare, big data, and design science.
中文翻译:
ROLEX:一种使用稳健局部解释进行可解释机器学习的新方法
大数据技术的最新发展正在彻底改变医疗保健预测分析 (HPA) 领域,使研究人员能够使用复杂的预测模型探索具有挑战性的问题。然而,医疗保健从业者不愿意采用这些模型,因为它们的黑匣子结构导致透明度和问责性较差。我们相信,实例级或本地解释可以通过实现患者级解释和医学知识发现来增强患者安全并培养信任。因此,我们提出了 RObust Local EXplanations (ROLEX) 方法,为本研究中的 HPA 模型开发稳健的实例级解释。ROLEX 采用了最先进的方法,并改善了它们在解释黑盒机器学习模型做出的个体层面预测方面的缺点。我们对与一种名为脆性骨折的流行疾病相关的大型现实世界数据集和两个公开可用的医疗数据集进行的分析表明,ROLEX 在本地解释的忠实度方面优于广泛接受的基准方法。此外,ROLEX 更加稳健,因为它不依赖于广泛的超参数调整或启发式算法。ROLEX 生成的解释以及本研究中提出的原型用户界面有可能通过提供患者级别的解释和新颖的见解来促进个性化护理和精准医疗。我们讨论了我们的研究在医疗保健、大数据和设计科学方面的理论意义。
更新日期:2023-09-06
中文翻译:
ROLEX:一种使用稳健局部解释进行可解释机器学习的新方法
大数据技术的最新发展正在彻底改变医疗保健预测分析 (HPA) 领域,使研究人员能够使用复杂的预测模型探索具有挑战性的问题。然而,医疗保健从业者不愿意采用这些模型,因为它们的黑匣子结构导致透明度和问责性较差。我们相信,实例级或本地解释可以通过实现患者级解释和医学知识发现来增强患者安全并培养信任。因此,我们提出了 RObust Local EXplanations (ROLEX) 方法,为本研究中的 HPA 模型开发稳健的实例级解释。ROLEX 采用了最先进的方法,并改善了它们在解释黑盒机器学习模型做出的个体层面预测方面的缺点。我们对与一种名为脆性骨折的流行疾病相关的大型现实世界数据集和两个公开可用的医疗数据集进行的分析表明,ROLEX 在本地解释的忠实度方面优于广泛接受的基准方法。此外,ROLEX 更加稳健,因为它不依赖于广泛的超参数调整或启发式算法。ROLEX 生成的解释以及本研究中提出的原型用户界面有可能通过提供患者级别的解释和新颖的见解来促进个性化护理和精准医疗。我们讨论了我们的研究在医疗保健、大数据和设计科学方面的理论意义。