当前位置: X-MOL 学术J. Comb. Theory A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Constructing uniform 2-factorizations via row-sum matrices: Solutions to the Hamilton-Waterloo problem
Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2023-09-01 , DOI: 10.1016/j.jcta.2023.105803
A.C. Burgess , P. Danziger , A. Pastine , T. Traetta

In this paper, we formally introduce the concept of a row-sum matrix over an arbitrary group G. When G is cyclic, these types of matrices have been widely used to build uniform 2-factorizations of small Cayley graphs (or, Cayley subgraphs of blown-up cycles), which themselves factorize complete (equipartite) graphs.

Here, we construct row-sum matrices over a class of non-abelian groups, the generalized dihedral groups, and we use them to construct uniform 2-factorizations that solve infinitely many open cases of the Hamilton-Waterloo problem, thus filling up large parts of the gaps in the spectrum of orders for which such factorizations are known to exist.



中文翻译:

通过行和矩阵构建统一的二因式分解:汉密尔顿-滑铁卢问题的解决方案

在本文中,我们正式引入了任意群G上的行和矩阵的概念。当G是循环时,这些类型的矩阵已广泛用于构建小凯莱图(或放大循环的凯莱子图)的统一 2 因式分解,其本身可因式分解完整(等分)图。

在这里,我们在一类非阿贝尔群(广义二面群)上构造行和矩阵,并使用它们构造一致的 2 因式分解来解决汉密尔顿-滑铁卢问题的无限多个开放情况,从而填充大部分已知存在此类因式分解的阶数谱中的间隙。

更新日期:2023-09-02
down
wechat
bug