当前位置:
X-MOL 学术
›
J. Environ. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Efficient sulfamethoxazole degradation via boosting nonradical-based peroxymonosulfate activation by biochar supported Co-Ni bimetal oxide
Journal of Environmental Chemical Engineering ( IF 7.4 ) Pub Date : 2023-09-01 , DOI: 10.1016/j.jece.2023.110903 Yueling Yu , Jia Yang , Baogang Zhao , Xinfei Fan , Yuanlu Xu , Yanming Liu
Journal of Environmental Chemical Engineering ( IF 7.4 ) Pub Date : 2023-09-01 , DOI: 10.1016/j.jece.2023.110903 Yueling Yu , Jia Yang , Baogang Zhao , Xinfei Fan , Yuanlu Xu , Yanming Liu
Nonradical-based peroxymonosulfate (PMS) activation has recently caught increasing attention due to its less susceptible to environmental interference in the complex water matrix, but the performance of activators still requires further development for efficient pollutants degradation in wastewater treatment. Herein, a novel Co-Ni bimetal oxide loaded biochar was fabricated to boost nonradical PMS activation for enhancing sulfamethoxazole (SMX) degradation. According to the results, the as-obtained catalyst exhibited excellent SMX degradation efficiency of 96.2% within 30 min through complete nonradical oxidation pathway (including both 1 O2 and mediated electron transfer). Co was confirmed to be the active sites to generate 1 O2 dominated nonradical pathway. The biochar acted as the porous material to achieve the electron transfer oxidation process, as well as Ni ensured sufficient electron transfer rate and bound Co active sites to prevent the leaching of metal ions. Meanwhile, the prepared Co-Ni bimetal oxide loaded biochar possessed a remarkable catalytic degradation durability in the complex water environment conditions and showed universality for various organic contaminants. This study offers a valuable clue on the rational design of novel catalyst to induce the nonradical pathway-based persulfate activation.
中文翻译:
通过生物炭负载的 Co-Ni 双金属氧化物促进基于非自由基的过氧一硫酸盐活化,实现高效的磺胺甲噁唑降解
基于非自由基的过氧一硫酸盐 (PMS) 活化最近引起了越来越多的关注,因为它在复杂的水基质中不易受到环境干扰,但活化剂的性能仍需要进一步开发,以便在废水处理中有效降解污染物。在此,制备了一种新型 Co-Ni 双金属氧化物负载生物炭,以增强非自由基 PMS 活化,从而增强磺胺甲噁唑 (SMX) 降解。结果表明,所得催化剂通过完整的非自由基氧化途径(包括 1O2 和介导的电子转移)在 30 min 内表现出 96.2% 的优异 SMX 降解效率。Co 被证实是产生 1O2 显性非自由基途径的活性位点。生物炭作为多孔材料实现电子转移氧化过程,而 Ni 确保了足够的电子转移速率并结合 Co 活性位点以防止金属离子浸出。同时,所制备的 Co-Ni 双金属氧化物负载生物炭在复杂的水环境条件下具有显著的催化降解耐久性,对各种有机污染物表现出普遍性。本研究为合理设计新型催化剂以诱导基于非自由基途径的过硫酸盐活化提供了有价值的线索。
更新日期:2023-09-01
中文翻译:
通过生物炭负载的 Co-Ni 双金属氧化物促进基于非自由基的过氧一硫酸盐活化,实现高效的磺胺甲噁唑降解
基于非自由基的过氧一硫酸盐 (PMS) 活化最近引起了越来越多的关注,因为它在复杂的水基质中不易受到环境干扰,但活化剂的性能仍需要进一步开发,以便在废水处理中有效降解污染物。在此,制备了一种新型 Co-Ni 双金属氧化物负载生物炭,以增强非自由基 PMS 活化,从而增强磺胺甲噁唑 (SMX) 降解。结果表明,所得催化剂通过完整的非自由基氧化途径(包括 1O2 和介导的电子转移)在 30 min 内表现出 96.2% 的优异 SMX 降解效率。Co 被证实是产生 1O2 显性非自由基途径的活性位点。生物炭作为多孔材料实现电子转移氧化过程,而 Ni 确保了足够的电子转移速率并结合 Co 活性位点以防止金属离子浸出。同时,所制备的 Co-Ni 双金属氧化物负载生物炭在复杂的水环境条件下具有显著的催化降解耐久性,对各种有机污染物表现出普遍性。本研究为合理设计新型催化剂以诱导基于非自由基途径的过硫酸盐活化提供了有价值的线索。