Science Bulletin ( IF 18.8 ) Pub Date : 2023-09-01 , DOI: 10.1016/j.scib.2023.08.060
Lianmeng Si 1 , Yihan Wu 1 , Hong Xiao 1 , Wensi Xing 1 , Rui Song 1 , Yiju Li 2 , Sha Wang 3 , Xu Liang 1 , Wenshan Yu 1 , Jianwei Song 1 , Shengping Shen 1
![]() |
Two-dimensional layered membranes with high and stable ion transport properties have various applications in nanofluidic devices; however, their construction remains a considerable challenge. Herein, we develop a superstable aramid nanofiber/graphite composite membrane with numerous one-dimensional and two-dimensional nano-confined interspaces for ultrafast ion transport. The fabricated flexible and scalable membrane exhibits high tensile strength (∼115.3 MPa) even after immersion in water for 90 days. Further, the aramid nanofiber/graphite conductor features the surface-charge-governed ion transport behavior. The ionic conductivity of the membrane at a low potassium chloride concentration of 10−4 mol/L can be enhanced by 16 times that of the bulk counterpart. More importantly, its structure and ionic conductivity remain unchanged even after immersion in different harsh solutions (e.g., acid, base, and ethanol) for over 30 days. Molecular dynamics simulations reveal that the superstability of the membrane is attributable to the robust interchain interactions within the aramid nanofibers and the strong interfacial interactions between the aramid nanofibers and graphite nanosheets. This study highlights the superior structural stability of the proposed flexible and scalable aramid nanofiber/graphite composite membrane, which could be employed in advanced nanofluidic devices for application under extreme working environments.
中文翻译:

超稳定、灵活且可扩展的纳流离子调节复合膜
具有高且稳定的离子传输性能的二维层状膜在纳米流体装置中具有多种应用;然而,它们的建设仍然是一个巨大的挑战。在此,我们开发了一种超稳定芳纶纳米纤维/石墨复合膜,具有大量一维和二维纳米受限间隙,用于超快离子传输。即使在水中浸泡 90 天后,所制造的柔性且可扩展的膜仍表现出高拉伸强度(∼115.3 MPa)。此外,芳纶纳米纤维/石墨导体具有表面电荷控制的离子传输行为。在10 -4 mol/L的低氯化钾浓度下,该膜的离子电导率可以比本体膜提高16倍。更重要的是,即使在不同的恶劣溶液(如酸、碱和乙醇)中浸泡30天以上,其结构和离子电导率也保持不变。分子动力学模拟表明,膜的超稳定性归因于芳纶纳米纤维内强大的链间相互作用以及芳纶纳米纤维和石墨纳米片之间的强界面相互作用。这项研究强调了所提出的柔性和可扩展芳纶纳米纤维/石墨复合膜的卓越结构稳定性,可用于极端工作环境下的先进纳米流体装置。