当前位置:
X-MOL 学术
›
Phys. Chem. Chem. Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Theoretical study of Mo2N supported transition metal single-atom catalyst for OER/ORR bifunctional electrocatalysis
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2023-09-01 , DOI: 10.1039/d3cp02565a Long Lin 1, 2 , Xiaoqin Long 1 , Xinyu Yang 1 , Pei Shi 1 , Linlin Su 3
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2023-09-01 , DOI: 10.1039/d3cp02565a Long Lin 1, 2 , Xiaoqin Long 1 , Xinyu Yang 1 , Pei Shi 1 , Linlin Su 3
Affiliation
The rational design and development of an efficient bifunctional catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is the key to developing new renewable energy storage and conversion technologies. Transition metal nitrides (TMNs) have shown excellent energy storage and electrochemistry potential due to their unique electronic structure and physicochemical properties. In this paper, based on the first-principles method of density functional theory (DFT), a series of efficient and stable bifunctional single-atom catalysts (SACs) were designed on Mo2N by introducing transition metal atoms as active sites, and the effects of different TM atoms on the catalytic performance of 2D-Mo2N (Two dimensional Mo2N) were evaluated. The calculation results show that TM@Mo2N exhibits excellent stability and good conductivity, which is conducive to electron transfer during the electrocatalytic reaction. Among these SACs, the Au@Mo2N single-atom catalyst has a very low OER overpotential (0.36 V), exhibiting high OER activity. Meanwhile, Au@Mo2N also exhibits excellent ORR performance with a low overpotential of 0.4 V, indicating that Au@Mo2N is the best OER/ORR bifunctional catalyst. This work provides a feasible solution for developing transition metal bifunctional electrocatalysts. Au@Mo2N is expected to replace traditional commercial Pt catalyst materials and become a catalyst with excellent performance in fuel cell modules.
中文翻译:
Mo2N负载过渡金属单原子催化剂OER/ORR双功能电催化理论研究
合理设计和开发用于氧还原反应(ORR)和析氧反应(OER)的高效双功能催化剂是开发新型可再生能源存储和转换技术的关键。过渡金属氮化物(TMN)由于其独特的电子结构和物理化学性质而表现出优异的储能和电化学潜力。本文基于密度泛函理论(DFT)第一性原理方法,引入过渡金属原子作为活性位点,在Mo 2 N上设计了一系列高效稳定的双功能单原子催化剂(SAC),并评价了不同TM原子对2D-Mo 2 N(二维Mo 2 N)催化性能的影响。计算结果表明TM@Mo 2 N表现出优异的稳定性和良好的导电性,有利于电催化反应过程中的电子转移。在这些SAC中,Au@Mo 2 N单原子催化剂具有非常低的OER过电势(0.36 V),表现出高OER活性。同时,Au@Mo 2 N还表现出优异的ORR性能,过电位低至0.4 V,表明Au@Mo 2 N是最好的OER/ORR双功能催化剂。该工作为开发过渡金属双功能电催化剂提供了可行的解决方案。Au@Mo 2 N有望取代传统商业Pt催化剂材料,成为燃料电池模块中性能优异的催化剂。
更新日期:2023-09-06
中文翻译:
Mo2N负载过渡金属单原子催化剂OER/ORR双功能电催化理论研究
合理设计和开发用于氧还原反应(ORR)和析氧反应(OER)的高效双功能催化剂是开发新型可再生能源存储和转换技术的关键。过渡金属氮化物(TMN)由于其独特的电子结构和物理化学性质而表现出优异的储能和电化学潜力。本文基于密度泛函理论(DFT)第一性原理方法,引入过渡金属原子作为活性位点,在Mo 2 N上设计了一系列高效稳定的双功能单原子催化剂(SAC),并评价了不同TM原子对2D-Mo 2 N(二维Mo 2 N)催化性能的影响。计算结果表明TM@Mo 2 N表现出优异的稳定性和良好的导电性,有利于电催化反应过程中的电子转移。在这些SAC中,Au@Mo 2 N单原子催化剂具有非常低的OER过电势(0.36 V),表现出高OER活性。同时,Au@Mo 2 N还表现出优异的ORR性能,过电位低至0.4 V,表明Au@Mo 2 N是最好的OER/ORR双功能催化剂。该工作为开发过渡金属双功能电催化剂提供了可行的解决方案。Au@Mo 2 N有望取代传统商业Pt催化剂材料,成为燃料电池模块中性能优异的催化剂。