当前位置: X-MOL 学术J. Comb. Theory B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Determining triangulations and quadrangulations by boundary distances
Journal of Combinatorial Theory Series B ( IF 1.2 ) Pub Date : 2023-08-31 , DOI: 10.1016/j.jctb.2023.08.002
John Haslegrave

We show that if all internal vertices of a disc triangulation have degree at least 6, then the full structure can be determined from the pairwise graph distances between boundary vertices. A similar result holds for disc quadrangulations with all internal vertices having degree at least 4. This confirms a conjecture of Itai Benjamini. Both degree bounds are best possible, and correspond to local non-positive curvature. However, we show that a natural conjecture for a “mixed” version of the two results is not true.



中文翻译:

通过边界距离确定三角剖分和四边形剖分

我们证明,如果圆盘三角剖分的所有内部顶点的度数至少为 6,则可以根据边界顶点之间的成对图距离确定完整结构。类似的结果也适用于所有内部顶点的度数至少为 4 的圆盘四边形。这证实了 Itai Benjamini 的猜想。两个度数界限都是最好的,并且对应于局部非正曲率。然而,我们表明,对两个结果的“混合”版本的自然猜想是不正确的。

更新日期:2023-08-31
down
wechat
bug