当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Oxygen Vacancy Control of Catalytic Activity of Cu/ZnO for Higher Alcohols Synthesis via Incorporating Ga
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2023-08-30 , DOI: 10.1021/acssuschemeng.3c03091
Min Tian 1 , Xing Tian 2 , Enjuan Ma 1 , Jiarong Hao 1 , Zhijun Zuo 1 , Wei Huang 1
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2023-08-30 , DOI: 10.1021/acssuschemeng.3c03091
Min Tian 1 , Xing Tian 2 , Enjuan Ma 1 , Jiarong Hao 1 , Zhijun Zuo 1 , Wei Huang 1
Affiliation
![]() |
Incorporating a small number of promoters into Cu/ZnO catalysts could modify the defect structure of the catalyst, leading to differences in the interaction of active sites and dramatically affecting the catalytic performance. Herein, Cu/ZnO catalysts with different oxygen vacancy contents were successfully synthesized by incorporating Ga via the Complete Liquid Phase method (CLP). The studies suggested that changing the Ga loading could effectively tune the oxygen vacancy content. Increased oxygen vacancies enhanced the electron transfer from ZnO to Cu, strengthening the Cu/ZnO interaction and herewith forming more Cu0 as well as defect structures of Znδ+, which favored the formation of CHxO*(CHx*) and carbon chain growth. In situ DRIFT results implied that oxygen vacancy facilitated the activation of CO, in which the formation of HCOO* and CHxO* was involved and CHx* formed through CO dissociation and further hydrogenation or the partial dissociation of CHxO* on the Cu0 active sites. Ultimately, C2+OH was produced by the C–C coupling of CHx* with CHxO*/CO* in the Znδ+ sites. As a result, Cu/ZnO catalyst doped with 6 mol % Ga realized outstanding catalytic performance with 17.22% CO conversion, and the fraction of ethanol and C2+OH up to 60.22% and 71.90%, respectively.
中文翻译:
氧空位控制 Cu/ZnO 掺入 Ga 合成高级醇的催化活性
在Cu/ZnO催化剂中掺入少量助催化剂可以改变催化剂的缺陷结构,导致活性位点相互作用的差异,从而显着影响催化性能。在此,通过完全液相法(CLP)掺入Ga,成功合成了具有不同氧空位含量的Cu/ZnO催化剂。研究表明,改变Ga负载量可以有效调节氧空位含量。氧空位的增加增强了从ZnO到Cu的电子转移,增强了Cu/ZnO相互作用,从而形成更多的Cu 0以及Zn δ+的缺陷结构,这有利于CH x O*(CH x*) 和碳链增长。原位 DRIFT 结果表明,氧空位促进了 CO 的活化,其中涉及HCOO* 和 CH x O*的形成,并且通过 CO解离并进一步加氢或 CH x O*部分解离形成 CH x *。 Cu 0活性位点。最终,C 2 + OH 通过CH x * 与CH x O*/CO* 在Zn δ+位点上的C-C 偶联产生。结果表明,掺杂6 mol% Ga的Cu/ZnO催化剂实现了优异的催化性能,CO转化率为17.22%,乙醇和C 2+ OH的分数分别高达60.22%和71.90%。
更新日期:2023-08-30
中文翻译:

氧空位控制 Cu/ZnO 掺入 Ga 合成高级醇的催化活性
在Cu/ZnO催化剂中掺入少量助催化剂可以改变催化剂的缺陷结构,导致活性位点相互作用的差异,从而显着影响催化性能。在此,通过完全液相法(CLP)掺入Ga,成功合成了具有不同氧空位含量的Cu/ZnO催化剂。研究表明,改变Ga负载量可以有效调节氧空位含量。氧空位的增加增强了从ZnO到Cu的电子转移,增强了Cu/ZnO相互作用,从而形成更多的Cu 0以及Zn δ+的缺陷结构,这有利于CH x O*(CH x*) 和碳链增长。原位 DRIFT 结果表明,氧空位促进了 CO 的活化,其中涉及HCOO* 和 CH x O*的形成,并且通过 CO解离并进一步加氢或 CH x O*部分解离形成 CH x *。 Cu 0活性位点。最终,C 2 + OH 通过CH x * 与CH x O*/CO* 在Zn δ+位点上的C-C 偶联产生。结果表明,掺杂6 mol% Ga的Cu/ZnO催化剂实现了优异的催化性能,CO转化率为17.22%,乙醇和C 2+ OH的分数分别高达60.22%和71.90%。