当前位置: X-MOL 学术 › Multiscale and Multidisciplinary Modeling, Experiments and Design › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational modelling of collagen-based flexible electronics: assessing the effect of hydration
Multiscale and Multidisciplinary Modeling, Experiments and Design Pub Date : 2023-08-30 , DOI: 10.1007/s41939-023-00230-4
Shirsha Bose , Elisa Mele , Vadim V. Silberschmidt

Collagen substrates in flexible electronics emerged as an alternative to the commonly used stretchable synthetic polymers such as polyethylene terephthalate, polyether sulfone, polydimethylsiloxane etc., thanks to their biocompatibility, flexibility and piezoelectric behaviour. Although researchers were successful in manufacturing these flexible-electronics component, still, the mismatch in the levels of stiffness between a softer polymeric substrate and a stiffer metallic layer (electrodes) might cause interfacial delamination. In use, collagen-based flexible electronics might be exposed to both dry and wet conditions. Experimental analysis showed a drastic change in the mechanical behaviour for these two conditions (the modulus changed by three orders of magnitude); hence, it is essential to investigate the behaviour of polymer-metal interface in both situations. In addition, the effect of geometry and orientation of metallic layers should also be considered; this could help to optimize the design of these electronic devices. In this study, 3D computational models were developed in Abaqus Simulia CAE with dimensions similar to those of elements in collagen-based flexible electronics—collagen (substrate) being the base layer while gold (conductive) and chromium (adhesive) were the top and middle layers, respectively. It was found that delamination in wet collagen was much less pronounced and slower as compared to dry collagen. The effects of geometry and orientation also showed significant differences in the pattern and an area of delamination.



中文翻译:

基于胶原蛋白的柔性电子器件的计算模型:评估水合的影响

由于其生物相容性、灵活性和压电性能,柔性电子产品中的胶原蛋白基板成为常用的可拉伸合成聚合物(如聚对苯二甲酸乙二醇酯、聚醚砜、聚二甲基硅氧烷等)的替代品。尽管研究人员成功地制造了这些柔性电子元件,但较软的聚合物基板和较硬的金属层(电极)之间的刚度水平不匹配可能会导致界面分层。在使用中,基于胶原蛋白的柔性电子产品可能会暴露在干燥和潮湿的条件下。实验分析表明,这两种条件下的机械行为发生了巨大变化(模量变化了三个数量级);因此,研究这两种情况下聚合物-金属界面的行为至关重要。此外,还应考虑金属层的几何形状和取向的影响;这有助于优化这些电子设备的设计。在本研究中,在 Abaqus Simulia CAE 中开发了 3D 计算模型,其尺寸与基于胶原蛋白的柔性电子器件中的元素相似 - 胶原蛋白(基底)是底层,而金(导电)和铬(粘合剂)是顶部和中间层层,分别。研究发现,与干胶原蛋白相比,湿胶原蛋白的分层不那么明显且更慢。几何形状和方向的影响也显示出图案和分层区域的显着差异。还应考虑金属层的几何形状和方向的影响;这有助于优化这些电子设备的设计。在本研究中,在 Abaqus Simulia CAE 中开发了 3D 计算模型,其尺寸与基于胶原蛋白的柔性电子器件中的元素相似 - 胶原蛋白(基底)是底层,而金(导电)和铬(粘合剂)是顶部和中间层层,分别。研究发现,与干胶原蛋白相比,湿胶原蛋白的分层不那么明显且更慢。几何形状和方向的影响也显示出图案和分层区域的显着差异。还应考虑金属层的几何形状和方向的影响;这有助于优化这些电子设备的设计。在本研究中,在 Abaqus Simulia CAE 中开发了 3D 计算模型,其尺寸与基于胶原蛋白的柔性电子器件中的元素相似 - 胶原蛋白(基底)是底层,而金(导电)和铬(粘合剂)是顶部和中间层层,分别。研究发现,与干胶原蛋白相比,湿胶原蛋白的分层不那么明显且更慢。几何形状和方向的影响也显示出图案和分层区域的显着差异。在 Abaqus Simulia CAE 中开发了 3D 计算模型,其尺寸与基于胶原蛋白的柔性电子器件中的元素相似 - 胶原蛋白(基底)是底层,而金(导电)和铬(粘合剂)分别是顶层和中间层。研究发现,与干胶原蛋白相比,湿胶原蛋白的分层不那么明显且更慢。几何形状和方向的影响也显示出图案和分层区域的显着差异。在 Abaqus Simulia CAE 中开发了 3D 计算模型,其尺寸与基于胶原蛋白的柔性电子器件中的元素相似 - 胶原蛋白(基底)是底层,而金(导电)和铬(粘合剂)分别是顶层和中间层。研究发现,与干胶原蛋白相比,湿胶原蛋白的分层不那么明显且更慢。几何形状和方向的影响也显示出图案和分层区域的显着差异。

更新日期:2023-08-31
down
wechat
bug