Separation and Purification Technology ( IF 8.1 ) Pub Date : 2023-08-29 , DOI: 10.1016/j.seppur.2023.124930 Li-Qiu Yang , Jia Yu , Peng Zhang , Ying Wang , Wen-Yu Yuan , Quan-Guo Zhai
Acetylene (C2H2) and carbon dioxide (CO2) both are linear molecules and the similarity in size and physical properties makes their separation very challenging. Compared to the C2H2-selective C2H2/CO2 separation, the inscrutable CO2-selective capture (also called inverse C2H2/CO2 separation) process is ideal as it enables one-step production of high-purity C2H2. Herein, we demonstrate the controllable C2H2/CO2 inverse adsorption and separation in a series of isomorphic Zn-1,2,4-triazolate-dicarboxylate pillar-layered frameworks (Zn-FA-TRZ, Zn-MUC-TRZ, and Zn-BDC-TRZ) based on the aromaticity modulation strategy. Compared with Zn-MUC-TRZ, the utilization of shorter FA linker only with one double bond leads to an intersection point between the isothermal adsorption curves. After the intersection points, Zn-FA-TRZ showed higher CO2 uptakes than C2H2 (thermodynamic inversion) and the intersection point moving towards the high-pressure region with the increasing temperature. When BDC involved, the enhanced ligand aromaticity enables a complete thermodynamic inversion for C2H2 and CO2 adsorption due to the much stronger interactions between the aromatic ring and CO2 molecules. The isosteric heats of adsorption for CO2 and C2H2 clearly support such inverse adsorption induced by the ligand aromaticity. Furthermore, the fixed-bed dynamic breakthrough experiments indicate that Zn-FA-TRZ and Zn-MUC-TRZ both have common C2H2-selective separation process, but Zn-BDC-TRZ adsorbent shows a prominent CO2-selective inverse C2H2/CO2 separation. Specially, with temperature increased, the inverse separation performance enhanced, and high purity C2H2 (>99.99 %) can be obtained via one-step separation from C2H2/CO2 (50/50) mixture at room temperature. Overall, inverse C2H2/CO2 separation was successfully achieved in pillar-layered metal–organic frameworks, which is helpful for the exploration of practical acetylene adsorbents.
中文翻译:
配体芳香性诱导的柱层状 Zn-1,2,4-三唑酯-二羧酸酯骨架中可控 C2H2/CO2 逆吸附和分离
乙炔(C 2 H 2 )和二氧化碳(CO 2)都是线性分子,尺寸和物理性质的相似性使得它们的分离非常具有挑战性。与C 2 H 2选择性C 2 H 2 /CO 2分离相比,难以理解的CO 2选择性捕获(也称为逆C 2 H 2 /CO 2分离)过程是理想的,因为它可以一步生产高浓度的CO 2 H 2 。 -纯度C 2 H 2。在此,我们演示了可控的C 2 H 2 /CO 2基于芳香度调节策略的一系列同构 Zn-1,2,4-三唑酯-二羧酸盐柱状层状框架(Zn-FA-TRZ、Zn-MUC-TRZ 和 Zn-BDC-TRZ)的逆吸附和分离。与 Zn-MUC-TRZ 相比,使用仅具有一个双键的较短 FA 连接体会导致等温吸附曲线之间出现交点。在交点之后,Zn-FA-TRZ表现出比C 2 H 2 (热力学反转)更高的CO 2吸收,并且交点随着温度的升高向高压区移动。当 BDC 参与时,增强的配体芳香性能够实现 C 2 H 2和 CO 2的完全热力学反转由于芳环和CO 2分子之间更强的相互作用而产生吸附。CO 2和C 2 H 2的等量吸附热清楚地支持由配体芳香性诱导的这种逆吸附。此外,固定床动态突破实验表明,Zn-FA-TRZ和Zn-MUC-TRZ都具有共同的C 2 H 2选择性分离过程,但Zn-BDC-TRZ吸附剂表现出突出的CO 2选择性逆C 2 H 2 /CO 2分离。特别是,随着温度升高,逆分离性能增强,C 2 H纯度高2 (>99.99%)可以通过在室温下从C 2 H 2 /CO 2 (50/50)混合物中一步分离得到。总体而言,在柱状层状金属有机框架中成功实现了C 2 H 2 /CO 2的逆分离,这有助于探索实用的乙炔吸附剂。