当前位置:
X-MOL 学术
›
ACS Appl. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bi2O3@Bi2O2CO3 Heterostructure Electrode for Significant Enhancement of Electrochemical Capacity
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2023-08-29 , DOI: 10.1021/acsaem.3c01278
Zhifang Feng 1 , Bona Zhang 2 , Peijun Ji 2 , Ruiyuan Hu 1 , Bin Gao 1 , Xiaofeng Wang 3 , Yu-Lan Meng 1 , Xue-Zhi Song 1 , Zhenquan Tan 1, 2
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2023-08-29 , DOI: 10.1021/acsaem.3c01278
Zhifang Feng 1 , Bona Zhang 2 , Peijun Ji 2 , Ruiyuan Hu 1 , Bin Gao 1 , Xiaofeng Wang 3 , Yu-Lan Meng 1 , Xue-Zhi Song 1 , Zhenquan Tan 1, 2
Affiliation
![]() |
Bi2O3 is increasingly used in supercapacitors because of its high theoretical specific capacitance, but poor inherent conductivity and poor ion diffusion limit its actual capacitance. Therefore, the rational design of the surface and structure of Bi2O3 is the key to improve the specific capacitance of Bi2O3. Here, we report the fabrication of high-performance negative electrodes from Bi2O2CO3 nanosheets wrapped around Bi2O3 arrays (Cu foam@Bi2O3@Bi2O2CO3) by a combination of electrical substitution, oxidative calcination, and hydrothermal methods. The realized Cu foam@Bi2O3@Bi2O2CO3 presents a surface cross-linked laminar structure, which shortens the electrolyte penetration path. The direct replacement growth of Bi on copper substrates to obtain subsequent composites allows for enhanced adhesion between the electrode material and the collector, facilitates charge transfer to the electrode material, and achieves ultrahigh loadings (13.2 mg cm–2). In addition, the constructed asymmetric supercapacitor has a maximum energy density of 1.6 mW h cm–2 (45.5 W h kg–1) at a power density of 6.2 mW cm–2 (175.9 W kg–1). This work provides a simple design strategy to enhance the electrochemical performance of Bi2O3.
中文翻译:
Bi2O3@Bi2O2CO3异质结构电极显着增强电化学能力
Bi 2 O 3由于其较高的理论比电容而越来越多地用于超级电容器,但其固有的导电性差和离子扩散差限制了其实际电容。因此,Bi 2 O 3表面和结构的合理设计是提高Bi 2 O 3比电容的关键。在这里,我们报道了用Bi 2 O 2 CO 3纳米片包裹Bi 2 O 3阵列(Cu泡沫@Bi 2 O 3 @Bi 2 O 2 CO3)采用电取代法、氧化煅烧法、水热法相结合的方法。所实现的Cu泡沫@Bi 2 O 3 @Bi 2 O 2 CO 3呈现出表面交联的层状结构,缩短了电解质的渗透路径。Bi在铜基底上直接置换生长以获得后续复合材料可以增强电极材料和集流体之间的粘附力,促进电荷转移到电极材料,并实现超高负载量(13.2 mg cm –2 )。此外,所构建的非对称超级电容器的最大能量密度为1.6 mW h cm –2 (45.5 W h kg –1),功率密度为 6.2 mW cm –2 (175.9 W kg –1 )。这项工作提供了一种简单的设计策略来增强Bi 2 O 3的电化学性能。
更新日期:2023-08-29
中文翻译:

Bi2O3@Bi2O2CO3异质结构电极显着增强电化学能力
Bi 2 O 3由于其较高的理论比电容而越来越多地用于超级电容器,但其固有的导电性差和离子扩散差限制了其实际电容。因此,Bi 2 O 3表面和结构的合理设计是提高Bi 2 O 3比电容的关键。在这里,我们报道了用Bi 2 O 2 CO 3纳米片包裹Bi 2 O 3阵列(Cu泡沫@Bi 2 O 3 @Bi 2 O 2 CO3)采用电取代法、氧化煅烧法、水热法相结合的方法。所实现的Cu泡沫@Bi 2 O 3 @Bi 2 O 2 CO 3呈现出表面交联的层状结构,缩短了电解质的渗透路径。Bi在铜基底上直接置换生长以获得后续复合材料可以增强电极材料和集流体之间的粘附力,促进电荷转移到电极材料,并实现超高负载量(13.2 mg cm –2 )。此外,所构建的非对称超级电容器的最大能量密度为1.6 mW h cm –2 (45.5 W h kg –1),功率密度为 6.2 mW cm –2 (175.9 W kg –1 )。这项工作提供了一种简单的设计策略来增强Bi 2 O 3的电化学性能。