当前位置:
X-MOL 学术
›
J. Mater. Chem. A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multistage coupling of interface and core–shell engineering of a cobalt-based heterostructure for integration of multiple electromagnetic absorption
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2023-08-29 , DOI: 10.1039/d3ta03778a Jun Zhou 1 , Hu Guo 1 , Jun Di 1 , Guigao Liu 1 , Wei Jiang 1
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2023-08-29 , DOI: 10.1039/d3ta03778a Jun Zhou 1 , Hu Guo 1 , Jun Di 1 , Guigao Liu 1 , Wei Jiang 1
Affiliation
To avoid the electromagnetic radiation pollution derived from the rapid development of radio technology, designing an absorber which integrated multiple properties with vigorous reflection loss (RL), wide bandwidth, thinness and a low filling ratio is paramount yet extremely challenging. Herein, a heterostructure fabricated by the coupling of interface engineering and core–shell concept is reported, namely, cobalt-based magnetic nanospheres uniformly anchored on the surface of reduced graphene oxide (rGO). A zeolitic imidazolate framework attracted on the surface of GO was exploited as initial precursor to obtain the absorber via polydopamine (PDA) coating and subsequent pyrolysis. The density functional theory (DFT) calculations confirm that the heterostructure constructed using an interfacial electron interaction contributed to the interfacial and dipole polarization, whereas the dielectric loss is further improved. As a result, the RL of −44.64 dB and the effective absorption bandwidth of 5.76 GHz are simultaneously realized by using an absorber at a low filling ratio of 15 wt%, corresponding to a thickness of 1.92 mm. Both the experimental and radar cross section (RCS) simulation demonstrate that the absorber can effectively suppress the electromagnetic (EM) scattering. Therefore, this work expands the prospects for precise synthesis of multifunctional absorbers and shows great promise for the development of frontier absorbers for anti-EM interference.
中文翻译:
用于集成多种电磁吸收的钴基异质结构界面和核壳工程的多级耦合
为了避免无线电技术快速发展带来的电磁辐射污染,设计一种集反射损耗(RL)大、宽带宽、薄型和低填充率等多种特性为一体的吸波体至关重要,但也极具挑战性。本文报道了一种通过界面工程和核壳概念相结合制备的异质结构,即均匀锚定在还原氧化石墨烯(rGO)表面的钴基磁性纳米球。利用 GO 表面吸引的沸石咪唑酯骨架作为初始前驱体,通过聚多巴胺(PDA)涂层和随后的热解。密度泛函理论(DFT)计算证实,利用界面电子相互作用构建的异质结构有助于界面和偶极子极化,而介电损耗进一步改善。结果,通过使用15wt%的低填充率(对应于1.92mm的厚度)的吸收体,同时实现了-44.64dB的RL和5.76GHz的有效吸收带宽。实验和雷达截面(RCS)模拟均表明该吸波体能够有效抑制电磁(EM)散射。因此,这项工作拓展了多功能吸收剂精确合成的前景,并为抗电磁干扰的前沿吸收剂的发展展现了巨大的前景。
更新日期:2023-08-29
中文翻译:
用于集成多种电磁吸收的钴基异质结构界面和核壳工程的多级耦合
为了避免无线电技术快速发展带来的电磁辐射污染,设计一种集反射损耗(RL)大、宽带宽、薄型和低填充率等多种特性为一体的吸波体至关重要,但也极具挑战性。本文报道了一种通过界面工程和核壳概念相结合制备的异质结构,即均匀锚定在还原氧化石墨烯(rGO)表面的钴基磁性纳米球。利用 GO 表面吸引的沸石咪唑酯骨架作为初始前驱体,通过聚多巴胺(PDA)涂层和随后的热解。密度泛函理论(DFT)计算证实,利用界面电子相互作用构建的异质结构有助于界面和偶极子极化,而介电损耗进一步改善。结果,通过使用15wt%的低填充率(对应于1.92mm的厚度)的吸收体,同时实现了-44.64dB的RL和5.76GHz的有效吸收带宽。实验和雷达截面(RCS)模拟均表明该吸波体能够有效抑制电磁(EM)散射。因此,这项工作拓展了多功能吸收剂精确合成的前景,并为抗电磁干扰的前沿吸收剂的发展展现了巨大的前景。