Nature Communications ( IF 14.7 ) Pub Date : 2023-08-25 , DOI: 10.1038/s41467-023-40740-w Kevin Yeh 1, 2 , Ishaan Sharma 1 , Kianoush Falahkheirkhah 1, 3 , Matthew P Confer 1 , Andres C Orr 1 , Yen-Ting Liu 1, 4 , Yamuna Phal 1, 4 , Ruo-Jing Ho 1, 2 , Manu Mehta 2 , Ankita Bhargava 5 , Wenyan Mei 6, 7, 8 , Georgina Cheng 8, 9 , John C Cheville 10 , Rohit Bhargava 1, 2, 3, 4, 8, 11, 12
Chemical imaging, especially mid-infrared spectroscopic microscopy, enables label-free biomedical analyses while achieving expansive molecular sensitivity. However, its slow speed and poor image quality impede widespread adoption. We present a microscope that provides high-throughput recording, low noise, and high spatial resolution where the bottom-up design of its optical train facilitates dual-axis galvo laser scanning of a diffraction-limited focal point over large areas using custom, compound, infinity-corrected refractive objectives. We demonstrate whole-slide, speckle-free imaging in ~3 min per discrete wavelength at 10× magnification (2 μm/pixel) and high-resolution capability with its 20× counterpart (1 μm/pixel), both offering spatial quality at theoretical limits while maintaining high signal-to-noise ratios (>100:1). The data quality enables applications of modern machine learning and capabilities not previously feasible – 3D reconstructions using serial sections, comprehensive assessments of whole model organisms, and histological assessments of disease in time comparable to clinical workflows. Distinct from conventional approaches that focus on morphological investigations or immunostaining techniques, this development makes label-free imaging of minimally processed tissue practical.
中文翻译:
用于全玻片化学成像的红外光谱激光扫描共聚焦显微镜
化学成像,尤其是中红外光谱显微镜,可实现无标记生物医学分析,同时实现广泛的分子灵敏度。然而,其缓慢的速度和较差的图像质量阻碍了其广泛采用。我们介绍了一种提供高通量记录、低噪声和高空间分辨率的显微镜,其光学系统自下而上的设计有助于使用定制的复合无限远校正折射物镜对大面积的衍射极限焦点进行双轴振镜激光扫描。我们展示了在 10× 放大倍率(2 μm/像素)下每个离散波长在 ~3 分钟内实现全玻片、无散斑成像,以及 20× 对应物(1 μm/像素)的高分辨率能力,两者都在理论极限下提供空间质量,同时保持高信噪比 (>100:1)。数据质量使现代机器学习和功能的应用成为可能,这些应用以前是不可能的 - 使用连续切片进行 3D 重建、对整个模式生物体的全面评估以及在与临床工作流程相当的时间内对疾病进行组织学评估。与专注于形态学研究或免疫染色技术的传统方法不同,这一发展使最低限度加工组织的无标记成像变得实用。