当前位置:
X-MOL 学术
›
Adv. Opt. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Novel Cyan Phosphor (K,Rb)3GdSi2O7:Ce3+ for Full-Spectrum Lighting through Local Structure Tailoring
Advanced Optical Materials ( IF 8.0 ) Pub Date : 2023-08-24 , DOI: 10.1002/adom.202301172 Zhuihao Huang 1, 2 , Zeyu Lyu 1 , Dashuai Sun 1 , Sida Shen 1 , Zheng Lu 1, 2 , Luhui Zhou 1, 2 , Shuai Wei 1 , Hongpeng You 1, 2, 3
Advanced Optical Materials ( IF 8.0 ) Pub Date : 2023-08-24 , DOI: 10.1002/adom.202301172 Zhuihao Huang 1, 2 , Zeyu Lyu 1 , Dashuai Sun 1 , Sida Shen 1 , Zheng Lu 1, 2 , Luhui Zhou 1, 2 , Shuai Wei 1 , Hongpeng You 1, 2, 3
Affiliation
Crystal-field engineering can obtain targeted emission more effectively, compared with the laborious experimental screening of new hosts. However, there still lack of paradigms for obtaining Ce3+-doped cyan phosphors by crystal-field engineering, and the correlation between the emission and the local structure of the Ce3+ ions has rarely been disclosed. Herein, through substituting the K+ in K3-yRbyGdSi2O7:Ce3+ with Rb+, the emission color changes from yellow-green to cyan and finally to blue. In addition, the emission intensity and thermal stability greatly improve, as the internal quantum efficiency increases from 39.4% (y = 0) to 83.6% (y = 1.2), and the thermal activation energy increases from 0.25 eV (y = 0) to 0.36 eV (y = 1.2). The optimized luminescent properties have been interpretated from the change in energy level splitting and configuration coordinate of Ce3+, both of which originate from the elongated Ce3+─O2− bonds. Finally, the cyan-emitting phosphor K1.8R1.2GSO:Ce3+ is applied to bridge the cyan gap in a fabricated white light-emitting diodes, and the color rendering index is improved from 90.8 to 93.4. This work not only provides an efficient cyan phosphor, but also highlights an avenue for the rational design of phosphors with optimal luminescent properties.
中文翻译:
通过局部结构定制实现全光谱照明的新型青色荧光粉 (K,Rb)3GdSi2O7:Ce3+
与繁琐的新宿主实验筛选相比,晶体场工程可以更有效地获得定向发射。然而,目前仍缺乏通过晶体场工程获得Ce3+掺杂青色荧光粉的范例,以及发射与局域结构之间的相关性Ce3+ 离子的含量很少被公开。这里,通过将K+代入K3-yRb< /span>7< /span>,这两者都源于拉长的Ce用于弥补所制作的白色发光二极管的青色间隙,显色指数从90.8提高到93.4。该工作不仅提供了一种高效的青色荧光粉,而且为合理设计具有最佳发光性能的荧光粉提供了一条途径。3+GSO:Ce 1.2R1.8 键。最后,青色荧光粉K2−─O3+3+,发射颜色从黄绿色变为青色,最后变为蓝色。此外,发射强度和热稳定性也大大提高,内量子效率从 39.4% (y = 0) 增加到 83.6% (y = 1.2),热活化能从 0.25 eV (y = 0) 增加到0.36 eV(y = 1.2)。优化的发光特性是从Ce的能级分裂和构型坐标的变化来解释的+ 与 Rb3+:CeO2GdSiy
更新日期:2023-08-24
中文翻译:
通过局部结构定制实现全光谱照明的新型青色荧光粉 (K,Rb)3GdSi2O7:Ce3+
与繁琐的新宿主实验筛选相比,晶体场工程可以更有效地获得定向发射。然而,目前仍缺乏通过晶体场工程获得Ce3+掺杂青色荧光粉的范例,以及发射与局域结构之间的相关性Ce3+ 离子的含量很少被公开。这里,通过将K+代入K3-yRb< /span>7< /span>,这两者都源于拉长的Ce用于弥补所制作的白色发光二极管的青色间隙,显色指数从90.8提高到93.4。该工作不仅提供了一种高效的青色荧光粉,而且为合理设计具有最佳发光性能的荧光粉提供了一条途径。3+GSO:Ce 1.2R1.8 键。最后,青色荧光粉K2−─O3+3+,发射颜色从黄绿色变为青色,最后变为蓝色。此外,发射强度和热稳定性也大大提高,内量子效率从 39.4% (y = 0) 增加到 83.6% (y = 1.2),热活化能从 0.25 eV (y = 0) 增加到0.36 eV(y = 1.2)。优化的发光特性是从Ce的能级分裂和构型坐标的变化来解释的+ 与 Rb3+:CeO2GdSiy