当前位置: X-MOL 学术J. Comb. Theory A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Weighted Subspace Designs from q-Polymatroids
Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2023-08-22 , DOI: 10.1016/j.jcta.2023.105799
Eimear Byrne , Michela Ceria , Sorina Ionica , Relinde Jurrius

The Assmus-Mattson Theorem gives a way to identify block designs arising from codes. This result was broadened to matroids and weighted designs by Britz et al. in 2009. In this work we present a further two-fold generalisation: first from matroids to polymatroids and also from sets to vector spaces. To achieve this, we study the characteristic polynomial of a q-polymatroid and outline several of its properties. We also derive a MacWilliams duality result and apply this to establish criteria on the weight enumerator of a q-polymatroid for which dependent spaces of the q-polymatroid form the blocks of a weighted subspace design.



中文翻译:

q-多项阵的加权子空间设计

Assmus-Mattson 定理提供了一种识别由代码产生的块设计的方法。Britz 等人将这一结果扩展到拟阵和加权设计。2009 年。在这项工作中,我们提出了进一步的两重概括:首先是从拟阵到多拟阵,以及从集合到向量空间。为了实现这一目标,我们研究了q多拟阵的特征多项式并概述了它的几个属性。我们还导出了 MacWilliams 对偶结果,并将其应用于建立q多类阵的权重枚举器的标准,其中q多类阵的相关空间形成加权子空间设计的块。

更新日期:2023-08-23
down
wechat
bug