当前位置:
X-MOL 学术
›
J. Mater. Chem. A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Efficient photoelectrocatalytic CO2 reduction to CH3OH via porous g-C3N4 nanosheets modified with cobalt phthalocyanine in ionic liquids
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2023-08-22 , DOI: 10.1039/d3ta03285j
Pengyan Li 1 , Yuhang Lin 1 , Zhenhong Qi 1 , Dongpeng Yan 1
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2023-08-22 , DOI: 10.1039/d3ta03285j
Pengyan Li 1 , Yuhang Lin 1 , Zhenhong Qi 1 , Dongpeng Yan 1
Affiliation
![]() |
Photocatalytic CO2 reduction into fuels is desirable; however, realizing efficient CnH2n+1OH (n = 1, 2) synthesis that involves electron-coupled proton transfer alongside C–C bond formation remains a challenge. Here, we demonstrated a photoelectrocatalytic (PEC) CO2 reduction strategy to generate CH3OH and CH3CH2OH on cobalt phthalocyanine/g-C3N4 (CoPc/CN) in ionic liquids (ILs). In situ infrared spectroscopy indicated that *HCOO was a key intermediate for the evolution of CH3OH, and density functional theory (DFT) revealed that the Gibbs energy of C–C coupling dropped significantly from 4.94 to 2.21 eV in the ILs electrolyte. The carrier separation efficiency was enhanced in [BMMIm]Br electrolyte, in which photocurrent was 9-fold higher than that in KHCO3. This strategy achieved record-high CH3OH and CH3CH2OH generation abilities (6465.9 and 218.6 μM cm−2 h−1), which were 60.7- and 17.8-fold higher than those in KHCO3, respectively. Therefore, this work develops a PEC strategy to obtain excellent CH3OH yield, and provides new insight into the C–C coupling mechanism in IL-assisted CO2 reduction.
中文翻译:
通过离子液体中钴酞菁修饰的多孔 g-C3N4 纳米片高效光电催化 CO2 还原为 CH3OH
光催化CO 2还原成燃料是理想的;然而,实现涉及电子耦合质子转移以及 C-C 键形成的有效 C n H 2 n +1 OH ( n = 1, 2) 合成仍然是一个挑战。在这里,我们展示了光电催化(PEC)CO 2还原策略,在离子液体(IL)中的钴酞菁/gC 3 N 4 (CoPc/CN)上生成CH 3 OH和CH 3 CH 2 OH 。原位红外光谱表明*HCOO是CH 3演化的关键中间体OH和密度泛函理论(DFT)表明,ILs电解质中C-C耦合的吉布斯能量从4.94 eV显着下降至2.21 eV。[BMMIm]Br电解质中的载流子分离效率得到提高,其光电流比KHCO 3中的光电流高9倍。该策略实现了创纪录的CH 3 OH和CH 3 CH 2 OH生成能力(6465.9和218.6 μM cm -2 h -1 ),分别比KHCO 3中的60.7倍和17.8倍高。因此,本工作开发了一种PEC策略以获得优异的CH 3 OH产率,并为IL辅助CO 2中的C-C偶联机制提供了新的见解。减少。
更新日期:2023-08-22
中文翻译:

通过离子液体中钴酞菁修饰的多孔 g-C3N4 纳米片高效光电催化 CO2 还原为 CH3OH
光催化CO 2还原成燃料是理想的;然而,实现涉及电子耦合质子转移以及 C-C 键形成的有效 C n H 2 n +1 OH ( n = 1, 2) 合成仍然是一个挑战。在这里,我们展示了光电催化(PEC)CO 2还原策略,在离子液体(IL)中的钴酞菁/gC 3 N 4 (CoPc/CN)上生成CH 3 OH和CH 3 CH 2 OH 。原位红外光谱表明*HCOO是CH 3演化的关键中间体OH和密度泛函理论(DFT)表明,ILs电解质中C-C耦合的吉布斯能量从4.94 eV显着下降至2.21 eV。[BMMIm]Br电解质中的载流子分离效率得到提高,其光电流比KHCO 3中的光电流高9倍。该策略实现了创纪录的CH 3 OH和CH 3 CH 2 OH生成能力(6465.9和218.6 μM cm -2 h -1 ),分别比KHCO 3中的60.7倍和17.8倍高。因此,本工作开发了一种PEC策略以获得优异的CH 3 OH产率,并为IL辅助CO 2中的C-C偶联机制提供了新的见解。减少。