Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-08-21 , DOI: 10.1016/j.cej.2023.145571
Hui Liu , Yingxue Fu , Shixing Chen , Wenchao Zhang , Kaisong Xiang , Fenghua Shen , Ruiyang Xiao , Liyuan Chai , Feiping Zhao
![]() |
Single-atom catalysts (SACs) have been widely applied in electrocatalysis, photocatalysis and advanced oxidation processes. However, the synthesis of Fe SACs supported by layered g-C3N4 remains challenging due to the high temperatures required for Fe single-atom (Fe-SA) sites formation, which can lead to the decomposition and curling of g-C3N4. Herein, Fe SACs loaded on layered g-C3N4 (Fe-SA@CN) were synthesized via an one-step pyrolysis using the pre-coordination metal precursor (hemin). The pre-coordinated structure in hemin prevented Fe atoms aggregation, while the planar structure of hemin suppressed the curling of g-C3N4 at high temperature. The structures of the resulting material, including the atomically dispersed Fe-SA sites and its coordination environment (Fe-N4), were characterized by AC-STEM and XAFS. The doping of Fe-SA sites facilitates the fracture of C-N bonds in pyridinic N and boosts the recombination of C-C bonds, thereby lowering the initial temperature of thermal decomposition of g-C3N4 and improving the quality of the carbonization residue. Experimental tests and DFT calculations demonstrate that Fe-SA sites effectively decrease the adsorption energy of PMS, facilitating electron transfer processes. The Fe-SA@CN, with a Fe loading of 2.03 wt%, performs best in activating PMS for the degradation of aromatic compounds bearing electron-donating groups, which are mainly attacked by 1O2 generated on Fe-SA sites (above 90% 1O2 selectivity). This study highlights the role of precursor in the synthesis of single-atom catalysts, and provides insight for developing SACs for advanced oxidation processes.
中文翻译:

源自氯化血红素的层状 g-C3N4 载体单原子 Fe-N4 催化剂,用于激活 PMS,通过单线态氧选择性降解富电子化合物
单原子催化剂(SAC)已广泛应用于电催化、光催化和高级氧化过程。然而,由层状gC 3 N 4支撑的Fe SAC的合成仍然具有挑战性,因为Fe单原子(Fe-SA)位点的形成需要高温,这可能导致gC 3 N 4的分解和卷曲。在此,使用预配位金属前体(氯化血红素)通过一步热解合成了负载在层状gC 3 N 4 (Fe-SA@CN)上的Fe SAC 。氯化血红素的预配位结构阻止了Fe原子的聚集,而氯化血红素的平面结构抑制了gC 3 N 4的卷曲在高温下。所得材料的结构,包括原子分散的 Fe-SA 位点及其配位环境 (Fe-N 4 ),通过 AC-STEM 和 XAFS 进行了表征。Fe-SA位点的掺杂有利于吡啶N中CN键的断裂,促进CC键的复合,从而降低gC 3 N 4热分解起始温度提高炭化渣的质量。实验测试和DFT计算表明Fe-SA位点有效降低了PMS的吸附能,促进电子转移过程。Fe-SA@CN的Fe负载量为2.03 wt%,在激活PMS以降解带有给电子基团的芳香族化合物方面表现最佳,这些化合物主要受到Fe-SA位点上生成的1 O 2的攻击(高于90)% 1 O 2选择性)。这项研究强调了前驱体在单原子催化剂合成中的作用,并为开发高级氧化过程的 SAC 提供了见解。