当前位置:
X-MOL 学术
›
IET Optoelectron.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electro-optical spiking neural networks using an enhanced optical axon with pulse amplitude modulation and automatic gain controller
IET Optoelectronics ( IF 2.3 ) Pub Date : 2023-08-18 , DOI: 10.1049/ote2.12101 George‐Iulian Uleru 1 , Mircea Hulea 1 , Othman Isam Younus 2 , Zabih Ghassemlooy 2 , Sujan Rajbhandari 3
IET Optoelectronics ( IF 2.3 ) Pub Date : 2023-08-18 , DOI: 10.1049/ote2.12101 George‐Iulian Uleru 1 , Mircea Hulea 1 , Othman Isam Younus 2 , Zabih Ghassemlooy 2 , Sujan Rajbhandari 3
Affiliation
Visible light communication can be leveraged to establish a wireless link between neurons in spiking networks even when neural areas are in relative motions. In electro-optical spiking neural networks (SNN), parallel transmission is often achieved through wavelength division multiplexing (WDM). However, WDM can be prohibitive in certain applications due to the need for multiple narrow-band transmitters and receivers with optical bandpass filters. Instead of WDM, an alternative approach of using non-orthogonal multiple access is explored (NOMA) with a pulse amplitude modulation (PAM) scheme in optical axons to enable parallel neural paths in an SNN. To evaluate NOMA with PAM, the authors implement an electro-optical SNN that controls the force of two anthropomorphic fingers actuated by the shape memory alloy-based actuators. An optical reference channel is used to dynamically adjust the optical receiver's gain to improve the receiver's decoding performance. Experimental results demonstrate that the electro-optical SNN can maintain control over the fingers and hold an object under varying channel conditions. Hence, the proposed system offers robustness against dynamic optical channels induced by the relative motion of neurons.
中文翻译:
使用具有脉冲幅度调制和自动增益控制器的增强型光学轴突的电光尖峰神经网络
即使神经区域处于相对运动,也可以利用可见光通信在尖峰网络中的神经元之间建立无线链接。在电光尖峰神经网络(SNN)中,并行传输通常通过波分复用(WDM)来实现。然而,由于需要多个带有光带通滤波器的窄带发射器和接收器,WDM 在某些应用中可能会令人望而却步。替代 WDM 的是,探索了一种使用非正交多址的替代方法 (NOMA),在光轴突中采用脉冲幅度调制 (PAM) 方案,以在 SNN 中实现并行神经路径。为了使用 PAM 评估 NOMA,作者实现了一种电光 SNN,该神经网络控制由基于形状记忆合金的执行器驱动的两个拟人手指的力。光参考通道用于动态调整光接收机的增益,以提高接收机的解码性能。实验结果表明,电光 SNN 可以在不同的通道条件下保持对手指的控制并握住物体。因此,所提出的系统对神经元相对运动引起的动态光通道具有鲁棒性。
更新日期:2023-08-23
中文翻译:
使用具有脉冲幅度调制和自动增益控制器的增强型光学轴突的电光尖峰神经网络
即使神经区域处于相对运动,也可以利用可见光通信在尖峰网络中的神经元之间建立无线链接。在电光尖峰神经网络(SNN)中,并行传输通常通过波分复用(WDM)来实现。然而,由于需要多个带有光带通滤波器的窄带发射器和接收器,WDM 在某些应用中可能会令人望而却步。替代 WDM 的是,探索了一种使用非正交多址的替代方法 (NOMA),在光轴突中采用脉冲幅度调制 (PAM) 方案,以在 SNN 中实现并行神经路径。为了使用 PAM 评估 NOMA,作者实现了一种电光 SNN,该神经网络控制由基于形状记忆合金的执行器驱动的两个拟人手指的力。光参考通道用于动态调整光接收机的增益,以提高接收机的解码性能。实验结果表明,电光 SNN 可以在不同的通道条件下保持对手指的控制并握住物体。因此,所提出的系统对神经元相对运动引起的动态光通道具有鲁棒性。