当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cobalt-doped tungsten suboxides for supercapacitor applications
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-08-18 , DOI: 10.1016/j.cej.2023.145341
Mohammad R. Thalji , Gomaa A.M. Ali , Jae-Jin Shim , Kwok Feng Chong

A crucial hurdle in developing supercapacitors is the creation of metal oxides with nanoscale structures that possess improved chemically active surfaces, ion/charge transport kinetics, and minimized ion-diffusion pathways. A metal-doping strategy to produce oxygen vacancies and increase electrical conductivity has proven effective for designing high-performance materials for energy storage devices. Herein, cobalt-doped tungsten suboxide (Co-doped W18O49) is grown on carbon cloth (CC) using a solvothermal approach and used as an electrode material for supercapacitor applications for the first time. Through this strategy, structurally distorted W18O49 is obtained by detecting a more apparent amorphous area caused by forming more oxygen vacancies with the bending of the lattice fringes. Benefiting from the synergy of more oxygen vacancies, increased lattice spacing, a high specific surface area, and accelerated ion diffusion, the Co-doped W18O49/CC electrode achieves a specific capacity of 475 C g−1 (792 F g−1) at a current density of 1.0 A g−1, which is superior to that of the undoped W18O49/CC (259 C g−1, 432 F g−1) and among the highest reported to date. Interestingly, the asymmetric supercapacitor device assembled using Co-doped W18O49/CC//AC/CC can provide a high energy density of 35.0 Wh kg−1. This strategy proves that the distortion of the W18O49 structure by Co doping improves the ion storage performance and self-discharge behavior. Also, it can enhance the energy storage performance of other electrode materials.



中文翻译:

用于超级电容器应用的钴掺杂钨低氧化物

开发超级电容器的一个关键障碍是创建具有纳米级结构的金属氧化物,这些金属氧化物具有改进的化学活性表面、离子/电荷传输动力学和最小化的离子扩散路径。事实证明,产生氧空位并提高电导率的金属掺杂策略对于设计用于储能设备的高性能材料是有效的。在此,使用溶剂热方法在碳布(CC)上生长钴掺杂低氧化钨(Co-掺杂W 18 O 49),并首次用作超级电容器应用的电极材料。通过这一策略,结构扭曲的 W 18 O 49是通过检测由于晶格条纹的弯曲形成更多的氧空位而引起的更明显的非晶区域而获得的。受益于更多氧空位、增加晶格间距、高比表面积和加速离子扩散的协同作用,Co掺杂W 18 O 49 /CC电极实现了475 C g -1 (792 F g - 1 )在1.0 A g -1的电流密度下,这优于未掺杂的W 18 O 49 /CC(259 C g -1 , 432 F g -1),并且是迄今为止报道的最高电流密度之一。有趣的是,使用Co掺杂W 18组装的不对称超级电容器装置O 49 /CC//AC/CC可以提供35.0Wh kg -1的高能量密度。该策略证明Co掺杂对W 18 O 49结构的扭曲改善了离子存储性能和自放电行为。此外,它还可以增强其他电极材料的储能性能。

更新日期:2023-08-19
down
wechat
bug