当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rapid self-heating synthesis of Fe-based nanomaterial catalyst for advanced oxidation
Nature Communications ( IF 14.7 ) Pub Date : 2023-08-17 , DOI: 10.1038/s41467-023-40691-2
Fengbo Yu 1 , Chao Jia 1 , Xuan Wu 1 , Liming Sun 1 , Zhijian Shi 1 , Tao Teng 1 , Litao Lin 1 , Zhelin He 1 , Jie Gao 1 , Shicheng Zhang 1, 2 , Liang Wang 3 , Shaobin Wang 4 , Xiangdong Zhu 1, 5
Affiliation  

Iron-based catalysts are promising candidates for advanced oxidation process-based wastewater remediation. However, the preparation of these materials often involves complex and energy intensive syntheses. Further, due to the inherent limitations of the preparation conditions, it is challenging to realise the full potential of the catalyst. Herein, we develop an iron-based nanomaterial catalyst via soft carbon assisted flash joule heating (FJH). FJH involves rapid temperature increase, electric shock, and cooling, the process simultaneously transforms a low-grade iron mineral (FeS) and soft carbon into an electron rich nano Fe0/FeS heterostructure embedded in thin-bedded graphene. The process is energy efficient and consumes 34 times less energy than conventional pyrolysis. Density functional theory calculations indicate that the electron delocalization of the FJH-derived heterostructure improves its binding ability with peroxydisulfate via bidentate binuclear model, thereby enhancing ·OH yield for organics mineralization. The Fe-based nanomaterial catalyst exhibits strong catalytic performance over a wide pH range. Similar catalysts can be prepared using other commonly available iron precursors. Finally, we also present a strategy for continuous and automated production of the iron-based nanomaterial catalysts.



中文翻译:

快速自热合成铁基纳米材料高级氧化催化剂

铁基催化剂是基于高级氧化工艺的废水修复的有希望的候选者。然而,这些材料的制备通常涉及复杂且能源密集的合成。此外,由于制备条件的固有限制,充分发挥催化剂的潜力具有挑战性。在此,我们通过软碳辅助闪速焦耳加热(FJH)开发了一种铁基纳米材料催化剂。FJH涉及快速升温、电击和冷却,该过程同时将低品位铁矿物(FeS)和软碳转化为嵌入薄层石墨烯中的富电子纳米Fe 0 /FeS异质结构。该过程非常节能,消耗的能量比传统热解少 34 倍。密度泛函理论计算表明,FJH衍生异质结构的电子离域通过双齿双核模型提高了其与过二硫酸盐的结合能力,从而提高了有机物矿化的·OH产率。Fe基纳米材料催化剂在较宽的pH范围内表现出较强的催化性能。类似的催化剂可以使用其他常用的铁前体来制备。最后,我们还提出了铁基纳米材料催化剂的连续自动化生产策略。

更新日期:2023-08-17
down
wechat
bug