当前位置: X-MOL 学术Mater. Today Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular dynamics study on the thermal decomposition of 1,3,5-trinitro-1,3,5-triazinane (RDX) catalyzed by aluminum nanoparticles with different contents
Materials Today Communications ( IF 3.7 ) Pub Date : 2023-08-16 , DOI: 10.1016/j.mtcomm.2023.106882
Fanqin Xiong , Ruixuan Xu , Hongqi Nie , Qilong Yan , Yuxin Wu , Jun Liu , Jiuyu Chen , Yunlan Sun

The mechanism of thermal decomposition of 1,3,5-trinitro-1,3,5-triazinane (RDX) catalyzed by nano-sized aluminum powder remains unclarified. In the present study, reactive molecular dynamics simulations using the parameterized reactive force field with low gradient correction (ReaxFF-lg) were conducted to study the microscale process of the RDX thermal decomposition catalyzed by different Al contents, and the density functional theory calculations were used to analyze the initial decomposition pathways of RDX on the Al surface. The thermal disintegration and the released energy of RDX are significantly facilitated by an increase in Al concentration at a lower level and the optimal value is around 35 wt.%, while a higher concentration of Al will lead to an opposite effect. The dissociation of nitro group is the most probable initial reaction pathway for RDX decomposition on the Al surface. In addition, the evolutions of Al-containing clusters, key intermediates, and final products were analyzed, providing more information about this reaction. The findings suggest that the addition of Al nanoparticles improves the properties of RDX-based explosives, but the optimal amount of Al is critical for achieving the desired effects. The detailed analysis of the reaction mechanism and intermediate products provides valuable insights into the underlying mechanisms of the Al/RDX system.



中文翻译:

不同含量纳米铝催化1,3,5-三硝基-1,3,5-三嗪烷(RDX)热分解的分子动力学研究

纳米铝粉催化1,3,5-三硝基-1,3,5-三嗪烷(RDX)热分解的机理尚不清楚。本研究采用低梯度修正参数化反作用力场(ReaxFF-lg)进行反应分子动力学模拟,研究不同Al含量催化RDX热分解的微观过程,并采用密度泛函理论计算分析 RDX 在 Al 表面的初始分解路径。较低水平的Al浓度增加会显着促进RDX的热崩解和释放能量,最佳值为35 wt.%左右,而较高的Al浓度会导致相反的效果。硝基的解离是 RDX 在 Al 表面分解最可能的初始反应途径。此外,还分析了含铝团簇、关键中间体和最终产物的演变,提供了有关该反应的更多信息。研究结果表明,添加铝纳米粒子可以改善 RDX 基炸药的性能,但最佳的铝含量对于实现预期效果至关重要。对反应机理和中间产物的详细分析为 Al/RDX 系统的基本机制提供了有价值的见解。研究结果表明,添加铝纳米粒子可以改善 RDX 基炸药的性能,但最佳的铝含量对于实现预期效果至关重要。对反应机理和中间产物的详细分析为 Al/RDX 系统的基本机制提供了有价值的见解。研究结果表明,添加铝纳米粒子可以改善 RDX 基炸药的性能,但最佳的铝含量对于实现预期效果至关重要。对反应机理和中间产物的详细分析为 Al/RDX 系统的基本机制提供了有价值的见解。

更新日期:2023-08-16
down
wechat
bug