Applied Surface Science ( IF 6.3 ) Pub Date : 2023-08-15 , DOI: 10.1016/j.apsusc.2023.158261 Yinxiang Wang , Yanna Zhao , Peifen Zhu , Xiantong Wu , Amina Koshayeva , Liping Ding , Guodong Wei , Ying Su
Non-metallic nitrogen doping and carbon coating may be considered as the most promising strategies to improve the performance of the TiO2 photoelectrocatalyst by reducing the carrier recombinant rate, enhancing stability, and broadening light corresponding spectrum. In this study, a one-stage carbothermal reduction nitridation (CRN) strategy is proposed to improve the photoelectrocatalytic performance (PEC) of the TiO2 nanowires for hydrogen production. TiO2 nanowires derived nitrogen-doped TiO2/Ti(C0.7N0.3) co-catalyst/nitrogen-doped carbon (N-TiO2/Ti(CN)/N-C) core-double shell nanowire arrays (NWAs) on the Ti substrate have been successfully developed with 2D g-C3N4 addition as nitrogen and carbon source. The unique N-TiO2/Ti(CN)/N-C composite structure offers superior PEC performance over the original TiO2 NWAs when exposed to both simulated sunlight and visible light conditions. The photocurrent density of N-TiO2/Ti(CN)/N-C can increase by approximately 20.5-fold and 18.4-fold when subjected to simulated sunlight and simulated visible light, respectively, compared to the pure TiO2 NWAs. The remarkable activity of the catalysis under visible light can be ascribed to the widened absorption spectrum that emanates from nitrogen doping, along with the reinforced conductivity that results from the dual-shell structure that promotes the separation and transfer of carriers that are generated by light.
中文翻译:
一种有前途的一步碳热还原氮化策略,用于增强具有稳定氮掺杂和所需核双壳结构的 TiO2 纳米线阵列催化剂的光电化学性能
非金属氮掺杂和碳包覆可能被认为是通过降低载流子重组率、增强稳定性和展宽光相应光谱来提高TiO 2光电催化剂性能的最有前途的策略。在这项研究中,提出了一种一级碳热还原氮化(CRN)策略来提高TiO 2纳米线制氢的光电催化性能(PEC)。TiO 2纳米线衍生的氮掺杂TiO 2 /Ti(C 0.7 N 0.3 )助催化剂/氮掺杂碳(N-TiO 2以2D gC 3 N 4添加作为氮源和碳源,成功开发了Ti基底上的/Ti(CN)/NC)核-双壳纳米线阵列(NWA) 。当暴露在模拟阳光和可见光条件下时,独特的 N-TiO 2 /Ti(CN)/NC 复合结构比原始 TiO 2 NWA 具有更优异的 PEC 性能。与纯TiO 2 相比,在模拟太阳光和模拟可见光下,N -TiO 2 /Ti(CN)/NC的光电流密度分别增加约20.5倍和18.4倍NWA。可见光下催化的显着活性可归因于氮掺杂产生的拓宽的吸收光谱,以及双壳结构增强的导电性,促进光产生的载流子的分离和转移。