当前位置:
X-MOL 学术
›
J. Comb. Theory A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
On the polymatroid Tutte polynomial
Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2023-08-16 , DOI: 10.1016/j.jcta.2023.105798 Xiaxia Guan , Weiling Yang , Xian'an Jin
中文翻译:
关于多拟阵Tutte多项式
更新日期:2023-08-16
Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2023-08-16 , DOI: 10.1016/j.jcta.2023.105798 Xiaxia Guan , Weiling Yang , Xian'an Jin
The Tutte polynomial is a well-studied invariant of matroids. The polymatroid Tutte polynomial , introduced by Bernardi, Kálmán, and Postnikov, is an extension of the classical Tutte polynomial from matroids to polymatroids P. In this paper, we first prove that and are interpolating for any fixed real number , and then we study the coefficients of high-order terms in and . These results generalize results on the interior and exterior polynomials of hypergraphs.
中文翻译:
关于多拟阵Tutte多项式
Tutte 多项式是经过充分研究的拟阵不变量。多拟阵Tutte多项式由 Bernardi、Kálmán 和 Postnikov 提出,是经典 Tutte 多项式从拟阵到多拟阵P的扩展。在本文中,我们首先证明和对任何固定实数进行插值,然后我们研究高阶项的系数和。这些结果概括了超图的内部和外部多项式的结果。