当前位置:
X-MOL 学术
›
Chem. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Improving the molecular spin qubit performance in zirconium MOF composites by mechanochemical dilution and fullerene encapsulation
Chemical Science ( IF 7.6 ) Pub Date : 2023-08-16 , DOI: 10.1039/d3sc03089j
Lucija Vujević 1 , Bahar Karadeniz 1 , Nikola Cindro 2 , Andraž Krajnc 3 , Gregor Mali 3 , Matjaž Mazaj 3 , Stanislav M Avdoshenko 4 , Alexey A Popov 4 , Dijana Žilić 1 , Krunoslav Užarević 1 , Marina Kveder 1
Chemical Science ( IF 7.6 ) Pub Date : 2023-08-16 , DOI: 10.1039/d3sc03089j
Lucija Vujević 1 , Bahar Karadeniz 1 , Nikola Cindro 2 , Andraž Krajnc 3 , Gregor Mali 3 , Matjaž Mazaj 3 , Stanislav M Avdoshenko 4 , Alexey A Popov 4 , Dijana Žilić 1 , Krunoslav Užarević 1 , Marina Kveder 1
Affiliation
![]() |
Enlarging the quantum coherence times and gaining control over quantum effects in real systems are fundamental for developing quantum technologies. Molecular electron spin qubits are particularly promising candidates for realizing quantum information processing due to their modularity and tunability. Still, there is a constant search for tools to increase their quantum coherence times. Here we present how the mechanochemical introduction of active spin qubits in the form of 10% diluted copper(II)-porphyrins in the diamagnetic PCN-223 and MOF-525 zirconium-MOF polymorph pair can be achieved. Furthermore, the encapsulation of fullerene during the MOF synthesis directs the process exclusively toward the rare PCN-223 framework with a controllable amount of fullerene in the framework channels. In addition to the templating role, the incorporation of fullerene increases the electron spin–lattice and phase-memory relaxation times, T1 and Tm. Besides decreasing the amount of nuclear spin-bearing solvent guests in the non-activated qubit frameworks, the observed improved relaxation times can be rationalized by modulating the phonon density of states upon fullerene encapsulation.
中文翻译:
通过机械化学稀释和富勒烯封装提高锆 MOF 复合材料的分子自旋量子位性能
扩大量子相干时间并控制实际系统中的量子效应是发展量子技术的基础。由于其模块化和可调谐性,分子电子自旋量子位是实现量子信息处理的特别有前途的候选者。尽管如此,人们仍在不断寻找增加量子相干时间的工具。在这里,我们介绍了如何在抗磁性 PCN-223 和 MOF-525 锆-MOF 多晶型对中以 10% 稀释铜 ( II )-卟啉的形式实现活性自旋量子位的机械化学引入。此外,MOF 合成过程中富勒烯的封装使该过程专门针对稀有的 PCN-223 框架,在框架通道中具有可控量的富勒烯。除了模板作用之外,富勒烯的加入还增加了电子自旋晶格和相记忆弛豫时间T 1和T m。除了减少非激活量子位框架中核自旋溶剂客体的数量外,观察到的弛豫时间的改善还可以通过调节富勒烯封装时的声子态密度来合理化。
更新日期:2023-08-18
中文翻译:

通过机械化学稀释和富勒烯封装提高锆 MOF 复合材料的分子自旋量子位性能
扩大量子相干时间并控制实际系统中的量子效应是发展量子技术的基础。由于其模块化和可调谐性,分子电子自旋量子位是实现量子信息处理的特别有前途的候选者。尽管如此,人们仍在不断寻找增加量子相干时间的工具。在这里,我们介绍了如何在抗磁性 PCN-223 和 MOF-525 锆-MOF 多晶型对中以 10% 稀释铜 ( II )-卟啉的形式实现活性自旋量子位的机械化学引入。此外,MOF 合成过程中富勒烯的封装使该过程专门针对稀有的 PCN-223 框架,在框架通道中具有可控量的富勒烯。除了模板作用之外,富勒烯的加入还增加了电子自旋晶格和相记忆弛豫时间T 1和T m。除了减少非激活量子位框架中核自旋溶剂客体的数量外,观察到的弛豫时间的改善还可以通过调节富勒烯封装时的声子态密度来合理化。