当前位置:
X-MOL 学术
›
Environ. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Identifying the Role of Surface Hydroxyl on FeOCl in Bridging Electron Transfer toward Efficient Persulfate Activation
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2023-08-14 , DOI: 10.1021/acs.est.3c04625 Ximeng Xu 1 , Shujing Zhang 1 , Yuhao Wang 1 , Yangqian Lin 1 , Qingqing Guan 1 , Chuncheng Chen 2
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2023-08-14 , DOI: 10.1021/acs.est.3c04625 Ximeng Xu 1 , Shujing Zhang 1 , Yuhao Wang 1 , Yangqian Lin 1 , Qingqing Guan 1 , Chuncheng Chen 2
Affiliation
FeOCl is a highly effective candidate material for advanced oxidation process (AOP) catalysts, but there remain enormous uncertainties about the essence of its outstanding activity. Herein, we clearly elucidate the mechanism involved in the FeOCl-catalyzed perdisulfate (PDS) activation, and the role of surface hydroxyls in bridging the electron transfer between Fe sites and PDS onto the FeOCl/H2O interface is highlighted. ATR-FTIR and Raman analyses reveal that phosphate could suppress the activity of FeOCl via substituting its surface hydroxyls, demonstrating the essential role of hydroxyl in PDS activation. By the use of X-ray absorption fine structure and density functional theory calculations, we found that the polar surface of FeOCl experienced prominent hydrolyzation, which enriched abundant electrons within the microarea around the Fe site, leading to a stronger attraction between FeOCl and PDS. As a result, PDS adsorption onto the FeOCl/H2O interface was obviously enhanced, the bond length of O–O in adsorbed PDS was lengthened, and the electron transfer from Fe atoms to O–O was also promoted. This work proposed a new strategy for PDS-based AOP development and a hint of building efficient heterogeneous AOP catalysts via regulating the hydroxylation of active sites.
中文翻译:
确定 FeOCl 表面羟基在桥接电子转移以实现有效过硫酸盐活化中的作用
FeOCl 是高级氧化过程 (AOP) 催化剂的高效候选材料,但其出色活性的本质仍然存在巨大的不确定性。在此,我们清楚地阐明了FeOCl催化的过二硫酸盐(PDS)活化的机制,并强调了表面羟基在将Fe位点和PDS之间的电子转移桥接到FeOCl/H 2 O界面上的作用。ATR-FTIR 和拉曼分析表明,磷酸盐可以通过取代 FeOCl 的表面羟基来抑制 FeOCl 的活性,证明羟基在 PDS 活化中的重要作用。通过X射线吸收精细结构和密度泛函理论计算,我们发现FeOCl的极性表面经历了显着的水解,从而在Fe位点周围的微区域内富集了丰富的电子,导致FeOCl和PDS之间具有更强的吸引力。结果,PDS在FeOCl/H 2 O界面上的吸附明显增强,吸附的PDS中O-O键长延长,电子从Fe原子到O-O的转移也得到促进。这项工作提出了基于 PDS 的 AOP 开发的新策略,并提示通过调节活性位点的羟基化来构建高效的多相 AOP 催化剂。
更新日期:2023-08-14
中文翻译:
确定 FeOCl 表面羟基在桥接电子转移以实现有效过硫酸盐活化中的作用
FeOCl 是高级氧化过程 (AOP) 催化剂的高效候选材料,但其出色活性的本质仍然存在巨大的不确定性。在此,我们清楚地阐明了FeOCl催化的过二硫酸盐(PDS)活化的机制,并强调了表面羟基在将Fe位点和PDS之间的电子转移桥接到FeOCl/H 2 O界面上的作用。ATR-FTIR 和拉曼分析表明,磷酸盐可以通过取代 FeOCl 的表面羟基来抑制 FeOCl 的活性,证明羟基在 PDS 活化中的重要作用。通过X射线吸收精细结构和密度泛函理论计算,我们发现FeOCl的极性表面经历了显着的水解,从而在Fe位点周围的微区域内富集了丰富的电子,导致FeOCl和PDS之间具有更强的吸引力。结果,PDS在FeOCl/H 2 O界面上的吸附明显增强,吸附的PDS中O-O键长延长,电子从Fe原子到O-O的转移也得到促进。这项工作提出了基于 PDS 的 AOP 开发的新策略,并提示通过调节活性位点的羟基化来构建高效的多相 AOP 催化剂。