Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2023-08-14 , DOI: 10.1016/j.jcta.2023.105800 Junyao Pan
Let S be a non-empty finite set. A flag of S is a set f of non-empty proper subsets of S such that or for all . The set is called the type of f. Two flags f and are in general position with respect to S if or for all and . For a fixed type T, Klaus Metsch defined the general position graph whose vertices are the flags of S of type T with two vertices being adjacent when the corresponding flags are in general position. In this paper, we characterize the full automorphism groups of in the case that . In particular, we solve an open problem proposed by Klaus Metsch.
中文翻译:
一般位置图的完全自同构群
设S为非空有限集。S的标志是S的非空真子集的集合f,使得或者对全部。套装称为f的类型。两个标志f和相对于S处于一般位置,如果或者对全部和。对于固定类型T,Klaus Metsch 定义了一般位置图其顶点是类型T的S的标志,当对应的标志处于一般位置时,两个顶点相邻。在本文中,我们描述了完全自同构群在这种情况下。特别是,我们解决了 Klaus Metsch 提出的一个开放问题。