Journal of Combinatorial Theory Series B ( IF 1.2 ) Pub Date : 2023-08-11 , DOI: 10.1016/j.jctb.2023.07.003 Hongliang Lu , Yan Wang , Xingxing Yu
Let k and n be two integers, with , , and n sufficiently large. We determine the -degree threshold for the existence of a rainbow perfect matchings in n-vertex k-uniform hypergraph. This implies the result of Rödl, Ruciński, and Szemerédi on the -degree threshold for the existence of perfect matchings in n-vertex k-uniform hypergraphs. In our proof, we identify the extremal configurations of closeness, and consider whether or not the hypergraph is close to the extremal configuration. In addition, we also develop a novel absorbing device and generalize the absorbing lemma of Rödl, Ruciński, and Szemerédi.
中文翻译:
均匀超图中彩虹完美匹配的余度阈值
令k和n为两个整数,其中,,并且n足够大。我们确定-n -顶点k -均匀超图中存在彩虹完美匹配的度阈值。这意味着 Rödl、Ruciński 和 Szemerédi 在- n -顶点k -均匀超图中存在完美匹配的度阈值。在我们的证明中,我们识别了接近度的极值配置,并考虑超图是否接近极值配置。此外,我们还开发了一种新颖的吸收装置并推广了 Rödl、Ruciński 和 Szemerédi 的吸收引理。