当前位置: X-MOL 学术J. Comb. Theory B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Co-degree threshold for rainbow perfect matchings in uniform hypergraphs
Journal of Combinatorial Theory Series B ( IF 1.2 ) Pub Date : 2023-08-11 , DOI: 10.1016/j.jctb.2023.07.003
Hongliang Lu , Yan Wang , Xingxing Yu

Let k and n be two integers, with k3, n0(modk), and n sufficiently large. We determine the (k1)-degree threshold for the existence of a rainbow perfect matchings in n-vertex k-uniform hypergraph. This implies the result of Rödl, Ruciński, and Szemerédi on the (k1)-degree threshold for the existence of perfect matchings in n-vertex k-uniform hypergraphs. In our proof, we identify the extremal configurations of closeness, and consider whether or not the hypergraph is close to the extremal configuration. In addition, we also develop a novel absorbing device and generalize the absorbing lemma of Rödl, Ruciński, and Szemerédi.



中文翻译:

均匀超图中彩虹完美匹配的余度阈值

kn为两个整数,其中k3,n==0模组k,并且n足够大。我们确定k-1-n -顶点k -均匀超图中存在彩虹完美匹配的度阈值。这意味着 Rödl、Ruciński 和 Szemerédi 在k-1- n -顶点k -均匀超图中存在完美匹配的度阈值。在我们的证明中,我们识别了接近度的极值配置,并考虑超图是否接近极值配置。此外,我们还开发了一种新颖的吸收装置并推广了 Rödl、Ruciński 和 Szemerédi 的吸收引理。

更新日期:2023-08-12
down
wechat
bug