当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Highly Reversible Zinc Metal Anodes Enabled by Solvation Structure and Interface Chemistry Modulation
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-08-09 , DOI: 10.1002/aenm.202301670
Xiao Wang 1 , Kaiqiang Feng 1 , Bingyan Sang 1 , Guijin Li 1 , Zhengchunyu Zhang 2 , Guowei Zhou 1 , Baojuan Xi 2 , Xuguang An 3 , Shenglin Xiong 2
Affiliation  

Aqueous Zn−ion batteries (AZIBs) promise appealing advantages including safety, affordability, and high volumetric energy density. However, rampant parasitic reactions and dendrite growth result in inadequate Zn reversibility. Here, a biocompatible additive, L-asparagine (Asp), in a low-cost aqueous electrolyte, is introduced to address these concerns. Combining substantive verification tests and theoretical calculations, it is demonstrated that an Asp-containing ZnSO4 electrolyte can create a robust nanostructured solid-electrolyte interface (SEI) by simultaneously modulating the Zn2+ solvation structure and optimizing the metal-molecule interface, which enables dense Zn deposition. The optimized electrolyte supports excellent Zn reversibility by achieving dendrite-free Zn plating/stripping over 240 h at a high Zn utilization of 85.5% in the symmetrical cell and an average 99.6% Coulombic efficiency for over 1600 cycles in the asymmetrical cell. Adequate full-cell performance is demonstrated with a poly(3,4-ethylenedioxythiophene) intercalated vanadium oxide (PEDOT-V2O5) cathode, which delivers a high areal capacity of 4.62 mAh cm−2 and holds 84.4% capacity retention over 200 cycles under practical conditions with an ultrathin Zn anode (20 µm) and a low negative/positive capacity ratio (≈2.4). This electrolyte engineering strategy provides new insights into regulating the anode/electrolyte interfacial chemistries toward high-performance AZIBs.

中文翻译:

通过溶剂化结构和界面化学调节实现高度可逆的锌金属阳极

水性锌离子电池(AZIB)具有吸引人的优势,包括安全性、经济性和高体积能量密度。然而,猖獗的寄生反应和枝晶生长导致锌的可逆性不足。为了解决这些问题,本文引入了一种低成本水性电解质中的生物相容性添加剂 L-天冬酰胺 (Asp)。结合实质性验证测试和理论计算,证明含Asp的ZnSO 4电解质可以通过同时调节Zn 2+来创建坚固的纳米结构固体电解质界面(SEI)溶剂化结构并优化金属-分子界面,从而实现致密的锌沉积。优化的电解质通过在对称电池中实现 240 小时内无枝晶的锌电镀/剥离,在 85.5% 的高锌利用率和在非对称电池中超过 1600 个循环的平均库仑效率为 99.6%,支持优异的锌可逆性。聚(3,4-乙撑二氧噻吩)插层氧化钒(PEDOT-V 2 O 5 )阴极表现出足够的全电池性能,其面积容量高达4.62 mAh cm -2在实际条件下,使用超薄锌阳极 (20 µm) 和低负/正容量比 (≈2.4),200 次循环后容量保持率为 84.4%。这种电解质工程策略为调节阳极/电解质界面化学以实现高性能 AZIB 提供了新的见解。
更新日期:2023-08-09
down
wechat
bug