当前位置:
X-MOL 学术
›
Anal. Methods
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Biosensor model based on single hairpin structure for highly sensitive detection of multiple targets
Analytical Methods ( IF 2.7 ) Pub Date : 2023-08-10 , DOI: 10.1039/d3ay01049j Ruiting Tian 1 , Weihua Zhao 1 , Hongbo Li 1, 2 , Shiwen Liu 3 , Ruqin Yu 2
Analytical Methods ( IF 2.7 ) Pub Date : 2023-08-10 , DOI: 10.1039/d3ay01049j Ruiting Tian 1 , Weihua Zhao 1 , Hongbo Li 1, 2 , Shiwen Liu 3 , Ruqin Yu 2
Affiliation
Nowadays, due to the genetic information carried by nucleic acids, they can serve as a biomarker for the early diagnosis of diseases, including tumors and cardiovascular disease, among others, making genetic testing a hotspot of biomedicine. Therefore, we have designed a universal fluorescence biosensor that can detect multiple DNA sequences with good performance. In our designed biosensor, λ exonuclease is used due to its ability to digest double-stranded DNA from the phosphorylated 5′- end and promote the targeted cycle. The exonuclease is introduced into a DNA hairpin containing a target recognition sequence. Hence, with the target, λ exonuclease-assisted targeted recycling can be activated. The hydrolyzed DNA hairpin triggers a strand displacement reaction between the hairpin probe (H1) and F-Q double DNA strand (F-Q), increasing the distance between the fluorescent chain (F) and quenching chain (Q); thus the fluorescence signal is emitted. It is exciting that the detection limit of the biosensor is 300 fM, which is relatively low, and there is an excellent linear relationship between fluorescence intensity and target concentration. Moreover, the biosensor we designed has universal applicability in the detection of other genes, and the range of RSD is 1.28–2.45%. Hence, it has good application prospects and practical value in the early detection of some diseases and the design of fluorescent biosensors.
中文翻译:
基于单发夹结构的生物传感器模型,可实现多目标的高灵敏检测
如今,由于核酸携带的遗传信息,可以作为肿瘤、心血管疾病等疾病早期诊断的生物标志物,使得基因检测成为生物医学的热点。因此,我们设计了一种通用荧光生物传感器,可以检测多个DNA序列,性能良好。在我们设计的生物传感器中,使用λ核酸外切酶,因为它能够消化磷酸化5'端的双链DNA并促进靶向循环。将核酸外切酶引入含有目标识别序列的 DNA 发夹中。因此,有了目标,就可以激活λ核酸外切酶辅助的靶向回收。水解的DNA发夹触发发夹探针(H1)和FQ双DNA链(FQ)之间的链置换反应,增加荧光链(F)和猝灭链(Q)之间的距离;从而发出荧光信号。令人兴奋的是,该生物传感器的检测限为300 fM,相对较低,并且荧光强度与目标浓度之间存在极好的线性关系。此外,我们设计的生物传感器在其他基因的检测中具有普遍适用性,RSD范围为1.28-2.45%。因此,它在一些疾病的早期检测和荧光生物传感器的设计中具有良好的应用前景和实用价值。
更新日期:2023-08-10
中文翻译:
基于单发夹结构的生物传感器模型,可实现多目标的高灵敏检测
如今,由于核酸携带的遗传信息,可以作为肿瘤、心血管疾病等疾病早期诊断的生物标志物,使得基因检测成为生物医学的热点。因此,我们设计了一种通用荧光生物传感器,可以检测多个DNA序列,性能良好。在我们设计的生物传感器中,使用λ核酸外切酶,因为它能够消化磷酸化5'端的双链DNA并促进靶向循环。将核酸外切酶引入含有目标识别序列的 DNA 发夹中。因此,有了目标,就可以激活λ核酸外切酶辅助的靶向回收。水解的DNA发夹触发发夹探针(H1)和FQ双DNA链(FQ)之间的链置换反应,增加荧光链(F)和猝灭链(Q)之间的距离;从而发出荧光信号。令人兴奋的是,该生物传感器的检测限为300 fM,相对较低,并且荧光强度与目标浓度之间存在极好的线性关系。此外,我们设计的生物传感器在其他基因的检测中具有普遍适用性,RSD范围为1.28-2.45%。因此,它在一些疾病的早期检测和荧光生物传感器的设计中具有良好的应用前景和实用价值。