Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
The Stabilization of CsPbI3−xBrx Phase by Lowering Annealing Temperature for Efficient All-Inorganic Perovskite Solar Cells
Solar RRL ( IF 6.0 ) Pub Date : 2023-08-07 , DOI: 10.1002/solr.202300358
Riccardo Montecucco 1 , Giovanni Pica 1 , Valentino Romano 2 , Francesco De Boni 3 , Silvia Cavalli 1 , Giovanna Bruni 1 , Eleonora Quadrivi 4 , Michele De Bastiani 1 , Mirko Prato 3 , Riccardo Po 4 , Giulia Grancini 5
Solar RRL ( IF 6.0 ) Pub Date : 2023-08-07 , DOI: 10.1002/solr.202300358
Riccardo Montecucco 1 , Giovanni Pica 1 , Valentino Romano 2 , Francesco De Boni 3 , Silvia Cavalli 1 , Giovanna Bruni 1 , Eleonora Quadrivi 4 , Michele De Bastiani 1 , Mirko Prato 3 , Riccardo Po 4 , Giulia Grancini 5
Affiliation
![]() |
All-inorganic perovskites are a promising solution for the fabrication of thermally stable perovskite solar cells (PSCs) with remarkable performances. However, a high annealing temperature is required for the stabilization of the photoactive phase of CsPbI3, which represents a limiting factor for their potential scaling-up and manufacturing at industrial scale. This work demonstrates a new process for the stabilization of CsPbI3−xBrx perovskite at lower annealing temperature of 180°, based on a rational halogen substitution enabled by the introduction of dimethylammonium (DMA) additives. Bromide inclusion favors indeed the conversion from the intermediate phases to CsPbI3−xBrx. Standard mesoscopic solar cells prepared with this approach achieve a power conversion efficiency (PCE) of 14.86%, with reduced voltage losses and increased fill factor compared to the reference device. Moreover, this work proves that a rational substitution of the halide in the DMA salt is also beneficial for the devices annealed at higher temperature, achieving an encouraging PCE of 16.23%. By reducing the processing temperature, this new method widens the range of applications of all-inorganic PSCs toward temperature-sensitive materials and industrial applications.
中文翻译:
通过降低高效全无机钙钛矿太阳能电池的退火温度来稳定 CsPbI3−xBrx 相
全无机钙钛矿是制造具有卓越性能的热稳定钙钛矿太阳能电池(PSC)的有前途的解决方案。然而,为了稳定CsPbI 3的光活性相,需要高退火温度,这成为其工业规模放大和制造的限制因素。这项工作展示了一种在 180° 的较低退火温度下稳定 CsPbI 3− x Br x钙钛矿的新工艺,该工艺基于通过引入二甲基铵 (DMA) 添加剂实现的合理卤素取代。溴化物夹杂确实有利于从中间相到 CsPbI 3− x Br x的转化。采用这种方法制备的标准介观太阳能电池的功率转换效率 (PCE) 为 14.86%,与参考器件相比,电压损耗降低,填充因子增加。此外,这项工作证明,合理替代DMA盐中的卤化物也有利于在更高温度下退火的器件,实现了令人鼓舞的16.23%的PCE。通过降低加工温度,这种新方法将全无机PSC的应用范围扩大到温度敏感材料和工业应用。
更新日期:2023-08-07
中文翻译:

通过降低高效全无机钙钛矿太阳能电池的退火温度来稳定 CsPbI3−xBrx 相
全无机钙钛矿是制造具有卓越性能的热稳定钙钛矿太阳能电池(PSC)的有前途的解决方案。然而,为了稳定CsPbI 3的光活性相,需要高退火温度,这成为其工业规模放大和制造的限制因素。这项工作展示了一种在 180° 的较低退火温度下稳定 CsPbI 3− x Br x钙钛矿的新工艺,该工艺基于通过引入二甲基铵 (DMA) 添加剂实现的合理卤素取代。溴化物夹杂确实有利于从中间相到 CsPbI 3− x Br x的转化。采用这种方法制备的标准介观太阳能电池的功率转换效率 (PCE) 为 14.86%,与参考器件相比,电压损耗降低,填充因子增加。此外,这项工作证明,合理替代DMA盐中的卤化物也有利于在更高温度下退火的器件,实现了令人鼓舞的16.23%的PCE。通过降低加工温度,这种新方法将全无机PSC的应用范围扩大到温度敏感材料和工业应用。