Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-08-09 , DOI: 10.1016/j.cej.2023.145313 Sinan Zheng , Yang Wang , Bin Luo , Leilei Sun , Guosheng Duan , Jingyun Huang , Zhizhen Ye
The notorious dendrites and corrosion reactions mainly derive from the instability of interface kinetics in aqueous environments, prominently impeding the Zn anode in commercial applications. To circumvent this issue, we employed sodium methylenedinaphthalene disulphonate (SMD) to modulate interfacial deposition kinetics by forming heterogeneous interfaces containing the electrical double layer (EDL) and solid electrolyte interface (SEI) in different stages for achieving crystallographic optimization of Zn deposition and inhibiting parasitic reactions. Benefitting from the vital interplay between -S = O of SMD and Zn2+, as well as the adsorption privilege of SMD to water on the Zn anode, the EDL can assume functions of promoting the initial desolvation of Zn(H2O)62+ and uniformizing nucleation sites of Zn electroplating at the early stage, dedicated to the subsequent formation of compact SEI and Zn (0 0 2) preferential nucleation. Subsequently, the SMD-induced SEI interphase further steers the stratiform growth of the Zn (0 0 2) plane following the as-formed zinc seed nucleation template, realizing late-stage regulation of interfaces to deposition dynamics. As anticipated, utilizing SMD-contained electrolyte results in the Zn anode exhibiting remarkable stability for 1400 h under harsh conditions of 5 mA cm−2 and 3 mA h cm−2, facilitating the improvement of lifespan in Zn-MnO2 full cells during 1400 cycles. This work highlights the significance of interface regulation in reversible deposition dynamics and provides promising insights into stabilizing Zn anodes.
中文翻译:
原位形成异质界面,诱导表面晶体操控以获得高度稳定的锌阳极
臭名昭著的枝晶和腐蚀反应主要源于水环境中界面动力学的不稳定性,严重阻碍了锌阳极的商业应用。为了解决这个问题,我们采用亚甲基萘二磺酸钠(SMD)通过在不同阶段形成包含双电层(EDL)和固体电解质界面(SEI)的异质界面来调节界面沉积动力学,以实现锌沉积的晶体学优化并抑制寄生反应。得益于SMD的-S = O与Zn 2+之间的重要相互作用,以及SMD对Zn阳极上的水的吸附特性,EDL可以起到促进Zn(H 2 O ) 6初始脱溶剂化的作用。Zn电镀早期的2+ 和均匀成核位点,致力于后续形成致密的SEI和Zn(0 0 2)优先成核。随后,SMD 诱导的 SEI 界面进一步引导 Zn (0 0 2) 平面遵循形成的锌种子成核模板的层状生长,实现了界面对沉积动力学的后期调节。正如预期的那样,使用含有SMD的电解质可使Zn阳极在5 mA cm -2和3 mA h cm -2的恶劣条件下表现出1400小时的显着稳定性,从而有助于提高Zn-MnO 2的寿命1400 个循环期间充满电池。这项工作强调了界面调节在可逆沉积动力学中的重要性,并为稳定锌阳极提供了有希望的见解。