当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Vacancy-Ordered Superstructure-Induced Delocalized States Enable Superior Sodium Ion Storage
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-08-07 , DOI: 10.1002/adfm.202306184 Yusha Gao 1, 2 , Ximeng Lv 3 , Zhuoran Lv 1, 2 , Baixin Peng 1, 2 , Gengfeng Zheng 3 , Fuqiang Huang 1, 2, 4
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-08-07 , DOI: 10.1002/adfm.202306184 Yusha Gao 1, 2 , Ximeng Lv 3 , Zhuoran Lv 1, 2 , Baixin Peng 1, 2 , Gengfeng Zheng 3 , Fuqiang Huang 1, 2, 4
Affiliation
Transition metal sulfides (TMSs) are perceived as competitive candidate anodes for sodium-ion batteries (SIBs) on account of their high capacity and admirable reversibility. However, a majority of TMSs suffer from huge volume expansion and poor kinetics so they cannot achieve durable and fast Na+ storage. Herein, a cation vacancy-ordered Cr2/3S is fabricated by extracting quantitative Cr atoms from nickel arsenide type CrS via sulfur “atomic pump,” that is, sulfur and particular sit Cr atoms are bonded to extend a new structure. The ordered vacancies not only construct a loosely-packed crystal structure but also induce delocalized electron states of Cr atoms, hence effectively accelerating Na+ diffusion and releasing volume strain to enable high-rate and longevous SIBs. The new Cr2/3S anode presents a high reversible capacity of 544 mAh g−1 after 100 cycles at 1 A g−1 and excellent high-rate performance of ≈100% capacity retention after 7000 cycles at 20 A g−1. Subsequent in situ and ex situ characterizations reveal the Na+ storage mechanism of Cr2/3S. The proposed cation exaction strategy through an innovative sulfur “atomic pump” can be an efficient way to achieve loosely-packed structure material for large-capacity and fast-kinetics anodes.
中文翻译:
空位有序上部结构诱导的离域态实现了卓越的钠离子存储
过渡金属硫化物(TMS)因其高容量和令人赞叹的可逆性而被认为是钠离子电池(SIB)的有竞争力的候选负极。然而,大多数TMS都存在巨大的体积膨胀和较差的动力学性能,因此无法实现持久、快速的Na +存储。在此,通过硫“原子泵”从砷化镍型CrS中提取定量的Cr原子,即硫与特定位点的Cr原子键合延伸出新的结构,从而制备了阳离子空位有序的Cr 2/3 S。有序的空位不仅构建了松散堆积的晶体结构,而且还诱导了Cr原子的离域电子态,从而有效地加速Na +扩散并释放体积应变,从而实现高速率和长寿命的SIB。新型Cr 2/3 S负极在1 A g -1下循环100次后呈现出544 mAh g -1的高可逆容量,并在20 A g -1下循环7000次后呈现出约100%容量保持率的优异高倍率性能。随后的原位和异位表征揭示了Cr 2/3 S 的 Na +存储机制。所提出的通过创新的硫“原子泵”进行阳离子萃取策略可以是实现大容量和高容量的松散堆积结构材料的有效方法。快动力学阳极。
更新日期:2023-08-07
中文翻译:
空位有序上部结构诱导的离域态实现了卓越的钠离子存储
过渡金属硫化物(TMS)因其高容量和令人赞叹的可逆性而被认为是钠离子电池(SIB)的有竞争力的候选负极。然而,大多数TMS都存在巨大的体积膨胀和较差的动力学性能,因此无法实现持久、快速的Na +存储。在此,通过硫“原子泵”从砷化镍型CrS中提取定量的Cr原子,即硫与特定位点的Cr原子键合延伸出新的结构,从而制备了阳离子空位有序的Cr 2/3 S。有序的空位不仅构建了松散堆积的晶体结构,而且还诱导了Cr原子的离域电子态,从而有效地加速Na +扩散并释放体积应变,从而实现高速率和长寿命的SIB。新型Cr 2/3 S负极在1 A g -1下循环100次后呈现出544 mAh g -1的高可逆容量,并在20 A g -1下循环7000次后呈现出约100%容量保持率的优异高倍率性能。随后的原位和异位表征揭示了Cr 2/3 S 的 Na +存储机制。所提出的通过创新的硫“原子泵”进行阳离子萃取策略可以是实现大容量和高容量的松散堆积结构材料的有效方法。快动力学阳极。