Journal of Electroceramics ( IF 1.7 ) Pub Date : 2023-08-09 , DOI: 10.1007/s10832-023-00324-y Andreas Klein , Karsten Albe , Nicole Bein , Oliver Clemens , Kim Alexander Creutz , Paul Erhart , Markus Frericks , Elaheh Ghorbani , Jan Philipp Hofmann , Binxiang Huang , Bernhard Kaiser , Ute Kolb , Jurij Koruza , Christian Kübel , Katharina N. S. Lohaus , Jürgen Rödel , Jochen Rohrer , Wolfgang Rheinheimer , Roger A. Souza , Verena Streibel , Anke Weidenkaff , Marc Widenmeyer , Bai-Xiang Xu , Hongbin Zhang
Chemical substitution, which can be iso- or heterovalent, is the primary strategy to tailor material properties. There are various ways how a material can react to substitution. Isovalent substitution changes the density of states while heterovalent substitution, i.e. doping, can induce electronic compensation, ionic compensation, valence changes of cations or anions, or result in the segregation or neutralization of the dopant. While all these can, in principle, occur simultaneously, it is often desirable to select a certain mechanism in order to determine material properties. Being able to predict and control the individual compensation mechanism should therefore be a key target of materials science. This contribution outlines the perspective that this could be achieved by taking the Fermi energy as a common descriptor for the different compensation mechanisms. This generalization becomes possible since the formation enthalpies of the defects involved in the various compensation mechanisms do all depend on the Fermi energy. In order to control material properties, it is then necessary to adjust the formation enthalpies and charge transition levels of the involved defects. Understanding how these depend on material composition will open up a new path for the design of materials by Fermi level engineering.
中文翻译:
费米能量作为描述电荷补偿机制的通用参数:氧化物电陶瓷费米能级工程的路径
化学取代可以是同价或异价的,是定制材料性能的主要策略。材料对取代的反应有多种方式。等价取代改变态密度,而异价取代,即掺杂,可以引起电子补偿、离子补偿、阳离子或阴离子的价态变化,或导致掺杂剂的偏析或中和。虽然原则上所有这些都可以同时发生,但通常需要选择某种机制来确定材料特性。因此,能够预测和控制个体补偿机制应该是材料科学的一个关键目标。该贡献概述了可以通过将费米能量作为不同补偿机制的通用描述符来实现这一点的观点。这种概括成为可能,因为各种补偿机制中涉及的缺陷的形成焓确实都取决于费米能量。为了控制材料特性,有必要调整相关缺陷的形成焓和电荷跃迁水平。了解这些如何取决于材料成分将为费米级工程材料设计开辟一条新途径。