当前位置: X-MOL 学术Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent Advances in Developing High-Performance Solid-State Lithium Batteries: Interface Engineering
Energy & Fuels ( IF 5.2 ) Pub Date : 2023-08-08 , DOI: 10.1021/acs.energyfuels.3c01626
Chencheng Cao 1 , Yijun Zhong 1 , Hannah Seneque 1 , Jacinta Simi 1 , Zongping Shao 1
Affiliation  

To surmount constraints, the increasing demand for electric vehicles and networks necessitates the use of lithium-ion batteries (LIBs) that traditionally use electrolytes that are volatile organic liquids (LEs). Increasing demand for electric networks and automobiles necessitates safer batteries in the presence of more energy. Lithium solid-state batteries (SSBs) have recently gained popularity as alternatives to LEs. However, the interface instability between solid electrolytes (SEs) and electrodes limits the energy density of SSBs. With parasitic reactions and dendrite growth, this culminates in a short cycle life and a dissatisfied coulombic efficiency. Significant advancements have been made in the field of SEs. Nevertheless, substantial challenges still exist that prevent the practical use of SSBs with high energy densities. This review summarizes the most current findings in the study of electrolytes. Basic comprehension of the mechanism, scientific obstacles, and solutions to electrolyte limitations for high-performance SSBs are covered. Numerous strategies for addressing interface issues are analyzed, and as a result, some recommendations are made regarding the optimal electrolyte characteristics for practical applications. At the end of this review, key concerns and proposals for future study into how best to develop high-performance lithium SSBs are discussed.

中文翻译:

开发高性能固态锂电池的最新进展:界面工程

为了克服限制,对电动汽车和网络日益增长的需求需要使用锂离子电池 (LIB),而锂离子电池传统上使用挥发性有机液体 (LE) 电解质。对电网和汽车的需求不断增长,需要在更多能源的情况下使用更安全的电池。锂固态电池 (SSB) 最近作为 LE 的替代品而受到欢迎。然而,固体电解质(SE)和电极之间的界面不稳定性限制了SSB的能量密度。由于寄生反应和枝晶生长,最终导致循环寿命短和库仑效率不满意。社会企业领域取得了重大进展。然而,仍然存在阻碍高能量密度SSB实际使用的重大挑战。这篇综述总结了电解质研究的最新发现。涵盖了对高性能 SSB 的机理、科学障碍和电解质限制的解决方案的基本理解。分析了解决界面问题的多种策略,并针对实际应用的最佳电解质特性提出了一些建议。在本次审查的最后,讨论了未来研究如何最好地开发高性能锂 SSB 的主要问题和建议。
更新日期:2023-08-08
down
wechat
bug