当前位置:
X-MOL 学术
›
Macromolecules
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Superior Strong and Stiff Alginate Fibers by Entanglement-Enhanced Stretching
Macromolecules ( IF 5.1 ) Pub Date : 2023-08-08 , DOI: 10.1021/acs.macromol.3c00380 Zhanpo Han 1 , Jixiao Hao 1 , Cong Du 1 , Hao Yan 1 , Hua Yuan 1 , Kaiwen Li 2 , Lidan Wang 2 , Zhen Xu 2 , Yeqiang Tan 1
Macromolecules ( IF 5.1 ) Pub Date : 2023-08-08 , DOI: 10.1021/acs.macromol.3c00380 Zhanpo Han 1 , Jixiao Hao 1 , Cong Du 1 , Hao Yan 1 , Hua Yuan 1 , Kaiwen Li 2 , Lidan Wang 2 , Zhen Xu 2 , Yeqiang Tan 1
Affiliation
The current environment crisis has forced a compelling trend of rapidly expanding degradable biomass polymers to take over petrochemical polymers. Exploiting new high-performance biomass materials has become urgent but is greatly challenging. Here, we develop a series of high-performance alginate fibers by a new entanglement-enhanced stretching strategy and examine its mechanism. The high stretch ratio exerted during spinning facilitates high structural orders and crystallinity of fibers, which exhibit a high modulus of 50.4 GPa and superior tensile strength of 1.05 GPa, outperforming most regenerated biomass fibers. Shear and extensional rheology shows that ultrahigh-molecular weight polyelectrolytes with high flexibility increase the entanglement density and extensional relaxation time of the spinning solution. Tensile tests of gel filaments formed during sequential coagulation demonstrate that gels with ultrahigh-molecular weight polyelectrolytes in the range of 3–9 wt % exhibit high strength and elongation at break due to the higher entanglement density and hindrance of cross-link formation, which is consistent with the maximum stretch ratio that can be exerted to the filament during wet spinning. This strategy of introducing “inert” polymer additives with ultrahigh molecular weight can also be adopted to fabricate alginate industrial filaments to compete with synthetic polymer staple filaments and other biomass fibers with upgrading strength to extend the source of high-performance biomaterials.
中文翻译:
通过缠结增强拉伸获得优异的强韧海藻酸盐纤维
当前的环境危机迫使可降解生物质聚合物迅速扩张以取代石化聚合物成为一种引人注目的趋势。开发新型高性能生物质材料已刻不容缓,但也面临着巨大的挑战。在这里,我们通过新的缠结增强拉伸策略开发了一系列高性能海藻酸盐纤维,并研究了其机理。纺丝过程中施加的高拉伸比有利于纤维的高结构有序度和结晶度,其具有 50.4 GPa 的高模量和 1.05 GPa 的优异拉伸强度,优于大多数再生生物质纤维。剪切和拉伸流变学表明,具有高柔韧性的超高分子量聚电解质增加了纺丝溶液的缠结密度和拉伸松弛时间。顺序凝固过程中形成的凝胶丝的拉伸测试表明,超高分子量聚电解质含量在 3-9 wt% 范围内的凝胶由于较高的缠结密度和交联形成的阻碍而表现出高强度和断裂伸长率,这与湿纺过程中长丝可施加的最大拉伸比一致。这种引入超高分子量“惰性”聚合物添加剂的策略也可以用于制造海藻酸盐工业长丝,以与合成聚合物短丝和其他生物质纤维竞争,提高强度,以扩展高性能生物材料的来源。
更新日期:2023-08-08
中文翻译:
通过缠结增强拉伸获得优异的强韧海藻酸盐纤维
当前的环境危机迫使可降解生物质聚合物迅速扩张以取代石化聚合物成为一种引人注目的趋势。开发新型高性能生物质材料已刻不容缓,但也面临着巨大的挑战。在这里,我们通过新的缠结增强拉伸策略开发了一系列高性能海藻酸盐纤维,并研究了其机理。纺丝过程中施加的高拉伸比有利于纤维的高结构有序度和结晶度,其具有 50.4 GPa 的高模量和 1.05 GPa 的优异拉伸强度,优于大多数再生生物质纤维。剪切和拉伸流变学表明,具有高柔韧性的超高分子量聚电解质增加了纺丝溶液的缠结密度和拉伸松弛时间。顺序凝固过程中形成的凝胶丝的拉伸测试表明,超高分子量聚电解质含量在 3-9 wt% 范围内的凝胶由于较高的缠结密度和交联形成的阻碍而表现出高强度和断裂伸长率,这与湿纺过程中长丝可施加的最大拉伸比一致。这种引入超高分子量“惰性”聚合物添加剂的策略也可以用于制造海藻酸盐工业长丝,以与合成聚合物短丝和其他生物质纤维竞争,提高强度,以扩展高性能生物材料的来源。