Nature Communications ( IF 14.7 ) Pub Date : 2023-08-08 , DOI: 10.1038/s41467-023-40539-9
Frowin Ellermann 1 , Aidan Sirbu 2 , Arne Brahms 3 , Charbel Assaf 1 , Rainer Herges 3 , Jan-Bernd Hövener 1 , Andrey N Pravdivtsev 1
|
Nuclear spin hyperpolarization is a quantum effect that enhances the nuclear magnetic resonance signal by several orders of magnitude and has enabled real-time metabolic imaging in humans. However, the translation of hyperpolarization technology into routine use in laboratories and medical centers is hampered by the lack of portable, cost-effective polarizers that are not commercially available. Here, we present a portable, automated polarizer based on parahydrogen-induced hyperpolarization (PHIP) at an intermediate magnetic field of 0.5 T (achieved by permanent magnets). With a footprint of 1 m2, we demonstrate semi-continuous, fully automated 1H hyperpolarization of ethyl acetate-d6 and ethyl pyruvate-d6 to P = 14.4% and 16.2%, respectively, and a 13C polarization of 1-13C-ethyl pyruvate-d6 of P = 7%. The duty cycle for preparing a dose is no more than 1 min. To reveal the full potential of 1H hyperpolarization in an inhomogeneous magnetic field, we convert the anti-phase PHIP signals into in-phase peaks, thereby increasing the SNR by a factor of 5. Using a spin-echo approach allowed us to observe the evolution of spin order distribution in real time while conserving the expensive reagents for reaction monitoring, imaging and potential in vivo usage. This compact polarizer will allow us to pursue the translation of hyperpolarized MRI towards in vivo applications further.
中文翻译:
![](https://scdn.x-mol.com/jcss/images/paperTranslation.png)
使用半特斯拉台式 MRI 和自动化实现的超极化成像来监视对氢诱导的偏振转移
核自旋超极化是一种量子效应,可将核磁共振信号增强几个数量级,并实现了人类的实时代谢成像。然而,由于缺乏市售的便携式、经济高效的偏振片,超极化技术在实验室和医疗中心的常规使用受到了阻碍。在这里,我们提出了一种基于 0.5 T 中间磁场(由永磁体实现)的基于副氢诱导超极化 (PHIP) 的便携式自动极化器。占地面积为 1 m2,我们展示了乙酸乙酯-d6 和丙酮酸乙酯-d6 的半连续、全自动 1H 超极化,分别达到 P = 14.4% 和 16.2%,以及 1-13C-丙酮酸乙酯-d6 的 13C 极化,P = 7%。制备剂量的占空比不超过 1 分钟。为了揭示非均匀磁场中 1H 超极化的全部潜力,我们将反相 PHIP 信号转换为同相峰值,从而将 SNR 提高 5 倍。使用自旋回波方法使我们能够实时观察自旋序分布的演变,同时节省昂贵的试剂用于反应监测、成像和潜在的体内使用。这种紧凑的偏振器将使我们能够进一步将超极化 MRI 转化为体内应用。