Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Building Atomic Scale and Dense Fe─N4 Edge Sites of Highly Efficient Fe─N─C Oxygen Reduction Catalysts Using a Sacrificial Bimetallic Pyrolysis Strategy
Small ( IF 13.0 ) Pub Date : 2023-08-03 , DOI: 10.1002/smll.202304750 Zhaoyan Luo 1 , Tingyi Zhou 1 , Yi Guan 2 , Lei Zhang 1 , Qianling Zhang 1 , Chuanxin He 1 , Xueliang Sun 2 , Xiangzhong Ren 1
Small ( IF 13.0 ) Pub Date : 2023-08-03 , DOI: 10.1002/smll.202304750 Zhaoyan Luo 1 , Tingyi Zhou 1 , Yi Guan 2 , Lei Zhang 1 , Qianling Zhang 1 , Chuanxin He 1 , Xueliang Sun 2 , Xiangzhong Ren 1
Affiliation
Replacing high-cost and scarce platinum (Pt) with transition metal and nitrogen co-doped carbon (M/N/C, M = Fe, Co, Mn, and so on) catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells has largely been impeded by the unsatisfactory ORR activity of M/N/C due to the low site utilization and inferior intrinsic activity of the M─N4 active center. Here, these limits are overcome by using a sacrificial bimetallic pyrolysis strategy to synthesize Fe─N─C catalyst by implanting the Cd ions in the backbone of ZIF-8, leading to exposure of inaccessible FeN4 edge sites (that is, increasing active site density (SD)) and high fast mass transport at the catalyst layer of cathode. As a result, the final obtained Fe(Cd)─N─C catalyst has an active site density of 33.01 µmol g−1 (with 33.01% site utilization) over 5.8 times higher than that of Fe─N─C catalyst. Specially, the optimal catalyst delivers a high ORR performance with a half-wave potential of 0.837 (vs RHE) in a 0.1 m HClO4 electrolyte, which surpasses most of Fe-based catalysts.
中文翻译:
使用牺牲双金属热解策略构建高效 Fe─N─C 氧还原催化剂的原子尺度和致密 Fe─N4 边缘位点
用过渡金属和氮共掺杂碳(M/N/C,M=Fe、Co、Mn等)催化剂代替高成本和稀缺的铂(Pt)用于质子交换中的氧还原反应(ORR)由于M─N 4活性中心的位点利用率低和固有活性差,M/N/C的ORR活性不理想,极大地阻碍了膜燃料电池的发展。在这里,通过使用牺牲双金属热解策略来合成 Fe─N─C 催化剂,通过将 Cd 离子植入 ZIF-8 的主链中,从而克服了这些限制,导致难以接近的 FeN 4边缘位点的暴露(即增加了活性位点)密度(SD))和阴极催化剂层的高快速传质。结果,最终获得的Fe(Cd)─N─C催化剂的活性中心密度为33.01 µmol g -1 (中心利用率为33.01%),是Fe─N─C催化剂的5.8倍以上。特别是,优化的催化剂在0.1 m HClO 4电解质中提供了高ORR性能,半波电位为0.837(vs RHE),超过了大多数铁基催化剂。
更新日期:2023-08-03
中文翻译:
使用牺牲双金属热解策略构建高效 Fe─N─C 氧还原催化剂的原子尺度和致密 Fe─N4 边缘位点
用过渡金属和氮共掺杂碳(M/N/C,M=Fe、Co、Mn等)催化剂代替高成本和稀缺的铂(Pt)用于质子交换中的氧还原反应(ORR)由于M─N 4活性中心的位点利用率低和固有活性差,M/N/C的ORR活性不理想,极大地阻碍了膜燃料电池的发展。在这里,通过使用牺牲双金属热解策略来合成 Fe─N─C 催化剂,通过将 Cd 离子植入 ZIF-8 的主链中,从而克服了这些限制,导致难以接近的 FeN 4边缘位点的暴露(即增加了活性位点)密度(SD))和阴极催化剂层的高快速传质。结果,最终获得的Fe(Cd)─N─C催化剂的活性中心密度为33.01 µmol g -1 (中心利用率为33.01%),是Fe─N─C催化剂的5.8倍以上。特别是,优化的催化剂在0.1 m HClO 4电解质中提供了高ORR性能,半波电位为0.837(vs RHE),超过了大多数铁基催化剂。