目的
使用 RETeval 全场视网膜电图 (ERG) 测量的明视阴性反应 (PhNR) 研究原发性开角型青光眼 (POAG) 各阶段视网膜内层的目标函数,并确定哪个 PhNR 参数最有用。
方法
检查了 90 名 POAG 患者的 90 只眼(30 名轻度 POAG(平均偏差(MD)≥ -6 dB)和 60 名中度至高级 POAG(MD < -6 dB))和 76 名对照病例的 76 只眼。我们研究了六个 PhNR 参数及其与 Humphrey 30-2 视野测试结果和光学相干断层扫描获得的环乳头视网膜神经纤维层 (cpRNFL) 厚度的关系。评估了以下 PhNR 参数:基谷 (BT)、峰谷 (PT)、72msPhNR、W 比、P 比、隐式时间 (IT) 以及 a 波和 b 波ERG 上的振幅。
结果
除 IT 之外的所有 PhNR 参数在所有 POAG(所有阶段)和对照组之间以及中度至高级 POAG 和对照组之间均存在显着差异。轻度POAG组的BT和72msPhNR与对照组有显着差异。关于 PhNR 参数与视野之间以及这些参数与 cpRNFL 厚度之间的关系,在所有 POAG 组和中度至高级 POAG 组中,观察到除 PT 和 IT 之外的所有 PhNR 参数与视野和 cpRNFL 厚度之间的相关性。轻度 POAG 组中 72msPhNR 与 cpRNFL 厚度相关。在轻度和中度至重度 POAG 组中,BT 的受试者工作特征曲线下面积大于其他 PhNR 参数。用于检查POAG有无的判别线性函数和诊断阈值如下定量地获得。关于BT:判别式=0.505×BT+2.017;阈值 = POAG 为正值,无 POAG 为负值;正确答案率=80.7%。对于72msPhNR:判别式=0.533×72msPhNR+1.553;阈值 = POAG 为正值,无 POAG 为负值;正确答案率 = 77.1%。
结论
RETeval 测量的 PhNR 参数可用于客观评估中度至高级 POAG 的视觉功能。 BT 似乎是诊断上最有用的参数。
"点击查看英文标题和摘要"
Evaluation of inner retinal function at different stages of primary open angle glaucoma using the photopic negative response (PhNR) measured by RETeval electroretinography
Purpose
To investigate the objective function of the inner retinal layer in each stage of primary open angle glaucoma (POAG) using the photopic negative response (PhNR) measured by RETeval full-field electroretinography (ERG), and to identify which PhNR parameter is the most useful.
Methods
Ninety eyes of 90 patients with POAG (30 with mild POAG (mean deviation (MD) ≥ -6 dB) and 60 with moderate-to-advanced POAG (MD < -6 dB)) and 76 eyes of 76 control cases were examined. We investigated six PhNR parameters and their relationships with the results of the Humphrey 30–2 visual field test and the thickness of the circumpapillary retinal nerve fiber layer (cpRNFL) obtained from optical coherence tomography. The following PhNR parameters were assessed: base-to-trough (BT), peak-to-trough (PT), 72msPhNR, the W-ratio, P-ratio, implicit time (IT), and a-wave and b-wave amplitudes on ERG.
Results
All PhNR parameters other than IT significantly differed between the all POAG (all stages) and control groups and between the moderate-to-advanced POAG and control groups. BT and 72msPhNR in the mild POAG group, significantly differed from those in the control group. Regarding the relationships between PhNR parameters and the visual field and between these parameters and cpRNFL thickness, correlations were observed between all PhNR parameters, except PT and IT, and both the visual field and cpRNFL thickness in the all and moderate-to-advanced POAG groups. 72msPhNR correlated with cpRNFL thickness in the mild POAG group. The area under the receiver operating characteristic curve was greater for BT than for the other PhNR parameters in both the mild and moderate-to-advanced POAG groups. The discriminant linear function for examining the presence or absence of POAG and the threshold for diagnosis were quantitatively obtained as follows. Regarding BT: discriminant = 0.505 × BT + 2.017; threshold = positive for POAG, negative for no POAG; correct answer rate = 80.7%. Concerning 72msPhNR: discriminant = 0.533 × 72msPhNR + 1.553; threshold = positive for POAG and negative for no POAG; correct answer rate = 77.1%.
Conclusion
RETeval-measured PhNR parameters were useful for an objective evaluation of visual function in moderate-to-advanced POAG. BT appeared to be the most diagnostically useful parameter.