Atmospheric Environment ( IF 4.2 ) Pub Date : 2023-08-01 , DOI: 10.1016/j.atmosenv.2023.119990 Parandaman Arathala , Rabi A. Musah
Mechanistic and kinetics studies of the gas phase reactions of dimethyl sulfone (DMS(O)2; CH3S(O)2CH3) mediated by hydroxyl radical (OH), chlorine atom (Cl) and nitrate radical (NO3) have been extensively investigated using quantum chemistry calculations along with kinetic modeling. The reaction of DMS(O)2 + OH/Cl/NO3 can in principle undergo abstraction and substitution pathways. The results revealed the dominant path to be abstraction of an H-atom from the methyl group of DMS(O)2 by OH, Cl and NO3, with barriers of 2.1, 4.2, and 9.8 kcal mol−1 respectively relative to their starting reactants, to produce CH2S(O)2CH3. The barrier heights for the substitution paths involved in the DMS(O)2 + OH, DMS(O)2 + Cl and DMS(O)2 + NO3 reactions were found to be very high (>30 kcal mol−1) and therefore inaccessible under tropospheric conditions. The rate coefficients for all possible H-atom abstractions associated with the DMS(O)2 + OH, DMS(O)2 + Cl and DMS(O)2 + NO3 reactions were calculated using Master equation solver for multi-energy well reactions (MESMER) code in the temperature range of 200–320 K and 1 atm. The overall rate coefficients for the reaction of DMS(O)2 initiated by OH radical, Cl atom and NO3 radical at 298 K and 1 atm were estimated to be 4.6 × 10−13, 9.1 × 10−14 and 3.7 × 10−15 cm3 molecule−1 s−1, respectively. The atmospheric lifetime of DMS(O)2 with respect to its reactions with OH, Cl and NO3 was also estimated. The major product CH2S(O)2CH3 further reacts with ground state molecular oxygen (3O2) to form the CH3S(O)2CH2OO adduct. Computational methods also showed that the rate of unimolecular isomerization of the CH3S(O)2CH2OO adduct is slow compared to its reactions with NO and hydroperoxyl (HO2) radical. Ultimately, the CH3S(O)2CH2OO adduct leads to formation of formic acid, sulfur dioxide, formaldehyde, methanol, carbon dioxide, sulfene, and OH radical as final products under high NO and HO2 radical atmospheric conditions.
中文翻译:
OH、Cl 和 NO3 介导的二甲基砜的大气降解以及 C 中心的二甲基砜自由基 + 3O2 反应:动力学和机理研究
羟基自由基( OH)、氯原子( Cl)和硝酸根(NO 3 )介导的二甲砜(DMS(O) 2 ; CH 3 S(O) 2 CH 3 )气相反应的机理和动力学研究使用量子化学计算和动力学建模进行了广泛的研究。DMS(O) 2 + OH/ Cl/NO 3的反应原则上可以经历抽提和取代途径。结果表明,主要路径是通过OH、Cl 和 NO 3从 DMS(O) 2的甲基中夺取 H 原子,相对于起始能量分别具有 2.1、4.2 和 9.8 kcal mol -1的势垒。反应物,生成CH 2 S(O) 2 CH 3。发现DMS(O) 2 + OH、DMS(O) 2 + Cl 和 DMS(O) 2 + NO 3反应中涉及的取代路径的势垒高度非常高 (>30 kcal mol − 1 ),并且因此在对流层条件下无法到达。使用多能井反应的主方程求解器计算与 DMS(O) 2 + OH、DMS(O) 2 + Cl 和 DMS(O) 2 + NO 3反应相关的所有可能的 H 原子提取的速率系数(MESMER) 代码的温度范围为 200–320 K 和 1 atm。在298 K和1 atm下由OH自由基、Cl原子和NO 3自由基引发的DMS(O) 2反应的总速率系数估计为4.6 × 10 -13、9.1 × 10 -14和3.7 × 10 -分别为15 cm 3分子-1 s -1。还估计了DMS(O) 2相对于其与OH、Cl 和 NO 3反应的大气寿命。主要产物CH 2 S(O) 2 CH 3进一步与基态分子氧( 3 O 2 )反应形成CH 3 S(O) 2 CH 2 OO加合物。计算方法还表明CH 3 S(O) 2 CH的单分子异构化速率2 OO加合物与其与NO和氢过氧自由基(HO 2 )自由基的反应相比是缓慢的。最终,CH 3 S(O) 2 CH 2 OO加合物在高NO和HO 2自由基大气条件下导致形成甲酸、二氧化硫、甲醛、甲醇、二氧化碳、亚磺基和OH自由基作为最终产物。