当前位置:
X-MOL 学术
›
ACS Appl. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Comprehensive Operando Visualization of the Electrochemical Events in the Cathode/Anode Layers in Thin-Film-Type All-Solid-State Lithium-Ion Batteries
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2023-08-01 , DOI: 10.1021/acsaem.3c01441 Nozomu Ishiguro 1, 2 , Tsutomu Totsuka 1, 2, 3 , Hideshi Uematsu 1, 2, 3 , Oki Sekizawa 4 , Kazuo Yamamoto 5 , Yasutoshi Iriyama 6 , Yukio Takahashi 1, 2, 7
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2023-08-01 , DOI: 10.1021/acsaem.3c01441 Nozomu Ishiguro 1, 2 , Tsutomu Totsuka 1, 2, 3 , Hideshi Uematsu 1, 2, 3 , Oki Sekizawa 4 , Kazuo Yamamoto 5 , Yasutoshi Iriyama 6 , Yukio Takahashi 1, 2, 7
Affiliation
The spatially resolved and quantitative observation and analysis of an all-solid-state lithium-ion battery (ASSLiB) under operating conditions play an important role in understanding the reaction or degradation mechanisms of the battery system. In this study, the chemical state distribution of a LiCoO2 cathode and Fe2(MoO4)3 anode layers in a thin-film-type ASSLiB under operating conditions is visualized in the single field of view from a cross-sectional direction using full-field transmission microscopy with X-ray absorption fine structure spectroscopy. Operando measurements during stepped charge/discharging processes revealed the different tendencies of the redox percolation of Co and Fe in the cathode and anode layers, respectively, during the charging/discharging process according to the difference in their lithiation/delithiation mechanisms. We also determine that structural and chemical degradation occurs in both layers after repeating charge–discharge cycling. In the cathode layer, the electrode is exfoliated and the Co in the entire layer becomes more oxidized after degradation, while in the anode layer, Fe2(MoO4)3 decomposes into γ-Fe2O3 and causes the layer to crack.
中文翻译:
薄膜型全固态锂离子电池阴极/阳极层电化学事件的全面操作可视化
对全固态锂离子电池(ASSLiB)在工作条件下的空间分辨和定量观察和分析对于理解电池系统的反应或退化机制发挥着重要作用。在这项研究中,在操作条件下薄膜型 ASSLiB 中的LiCoO 2阴极和 Fe 2 (MoO 4 ) 3阳极层的化学态分布在单个视场中从横截面方向可视化,使用全-具有X射线吸收精细结构光谱的场透射显微镜。操作分级充电/放电过程中的测量揭示了在充电/放电过程中,根据其锂化/脱锂机制的不同,Co和Fe分别在正极层和负极层中的氧化还原渗透趋势不同。我们还确定,在重复充放电循环后,两层都会发生结构和化学降解。在阴极层中,电极剥落,整个层中的Co在降解后变得更加氧化,而在阳极层中,Fe 2 (MoO 4 ) 3分解成γ-Fe 2 O 3并导致层破裂。
更新日期:2023-08-01
中文翻译:
薄膜型全固态锂离子电池阴极/阳极层电化学事件的全面操作可视化
对全固态锂离子电池(ASSLiB)在工作条件下的空间分辨和定量观察和分析对于理解电池系统的反应或退化机制发挥着重要作用。在这项研究中,在操作条件下薄膜型 ASSLiB 中的LiCoO 2阴极和 Fe 2 (MoO 4 ) 3阳极层的化学态分布在单个视场中从横截面方向可视化,使用全-具有X射线吸收精细结构光谱的场透射显微镜。操作分级充电/放电过程中的测量揭示了在充电/放电过程中,根据其锂化/脱锂机制的不同,Co和Fe分别在正极层和负极层中的氧化还原渗透趋势不同。我们还确定,在重复充放电循环后,两层都会发生结构和化学降解。在阴极层中,电极剥落,整个层中的Co在降解后变得更加氧化,而在阳极层中,Fe 2 (MoO 4 ) 3分解成γ-Fe 2 O 3并导致层破裂。