Applied Catalysis B: Environment and Energy ( IF 20.2 ) Pub Date : 2023-07-29 , DOI: 10.1016/j.apcatb.2023.123134 Sijun Wang , Feng Gong , Qiang Zhou , Yunlong Xie , Hao Li , Menglin Li , Enkang Fu , Peng Yang , Yuhang Jing , Rui Xiao
Chemical looping ammonia synthesis (CLAS) is promising to achieve decentralized ammonia synthesis under ambient pressure. Here, we develop a highly selective composite nitrogen carrier for efficient CLAS based on transition metals (TMs=Co, Ni, Fe) decorated chromium nitride (CrN). Systematic studies indicate that the pristine CrN is extremely inert: only 4.5% lattice nitrogen can be consumed in reacting with H2 (700 °C, 1 bar). Upon loading cobalt, the composite nitrogen carrier achieves lattice nitrogen conversion of 50.7% and ammonia selectivity up to 98.1%. Furthermore, Co-CrN exhibits excellent CLAS performance, attaining an average ammonia production rate of 466.1 μmol g−1 h−1 in 12 chemical loopings, which is ∼10 times that of the pristine CrN. Theoretical calculations reveal that the nitrogen vacancies generated in hydrogenation play a crucial role as activation centers for N2 fixation through a Mars–van Krevelen mechanism. This work provides a novel strategy to optimize nitrogen carriers for enhanced CLAS.
中文翻译:
过渡金属增强氮化铬作为复合氮载体用于可持续化学循环氨合成
化学循环氨合成(CLAS)有望在常压下实现分散氨合成。在这里,我们开发了一种基于过渡金属(TMs=Co、Ni、Fe)装饰氮化铬(CrN)的高效 CLAS 的高选择性复合氮载体。系统研究表明,原始CrN 具有极强的惰性:与H 2 (700 °C,1 bar)反应时仅消耗4.5% 的晶格氮。负载钴后,复合氮载体的晶格氮转化率达到50.7%,氨选择性高达98.1%。此外,Co-CrN表现出优异的CLAS性能,平均氨生成率为466.1 μmol g -1 h -1共有 12 个化学环,是原始 CrN 的 10 倍。理论计算表明,氢化过程中产生的氮空位作为通过Mars-van Krevelen机制固定N 2的活化中心发挥着至关重要的作用。这项工作提供了一种优化氮载体以增强 CLAS 的新策略。