Theoretical Chemistry Accounts ( IF 1.6 ) Pub Date : 2023-07-30 , DOI: 10.1007/s00214-023-03010-y Tommaso Nottoli , Ivan Giannì , Antoine Levitt , Filippo Lipparini
We present two open-source implementations of the locally optimal block preconditioned conjugate gradient (lobpcg) algorithm to find a few eigenvalues and eigenvectors of large, possibly sparse matrices. We then test lobpcg for various quantum chemistry problems, encompassing medium to large, dense to sparse, well-behaved to ill-conditioned ones, where the standard method typically used is Davidson’s diagonalization. Numerical tests show that while Davidson’s method remains the best choice for most applications in quantum chemistry, LOBPCG represents a competitive alternative, especially when memory is an issue, and can even outperform Davidson for ill-conditioned, non-diagonally dominant problems.
中文翻译:
针对量子化学中大特征值问题的局部最优块预条件共轭梯度的稳健开源实现
我们提出了局部最优块预条件共轭梯度 ( lobpcg ) 算法的两种开源实现,以查找大型且可能稀疏矩阵的一些特征值和特征向量。然后,我们测试lobpcg的各种量子化学问题,包括中型到大型、密集到稀疏、良好行为到不良条件问题,其中通常使用的标准方法是戴维森对角化。数值测试表明,虽然戴维森方法仍然是量子化学中大多数应用的最佳选择,但 LOBPCG 代表了一种有竞争力的替代方案,特别是当内存成为问题时,甚至可以在病态、非对角占优问题上优于戴维森方法。