当前位置:
X-MOL 学术
›
J. Phys. Chem. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Molecular Mechanisms Underlying Detection Sensitivity in Nanoparticle-Assisted NMR Chemosensing
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2023-07-27 , DOI: 10.1021/acs.jpclett.3c01005 Sebastian Franco-Ulloa 1, 2 , Andrea Cesari 3 , Laura Riccardi 1 , Federico De Biasi 3 , Daniele Rosa-Gastaldo 3 , Fabrizio Mancin 3 , Marco De Vivo 1 , Federico Rastrelli 3
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2023-07-27 , DOI: 10.1021/acs.jpclett.3c01005 Sebastian Franco-Ulloa 1, 2 , Andrea Cesari 3 , Laura Riccardi 1 , Federico De Biasi 3 , Daniele Rosa-Gastaldo 3 , Fabrizio Mancin 3 , Marco De Vivo 1 , Federico Rastrelli 3
Affiliation
Nanoparticle-assisted nuclear magnetic resonance (NMR) chemosensing exploits monolayer-protected nanoparticles as supramolecular hosts to detect small molecules in complex mixtures via nuclear Overhauser effect experiments with detection limits down to the micromolar range. Still, the structure–sensitivity relationships at the basis of such detection limits are little understood. In this work, we integrate NMR spectroscopy and atomistic molecular dynamics simulations to examine the covariates that affect the sensitivity of different NMR chemosensing experiments [saturation transfer difference (STD), water STD, and high-power water-mediated STD]. Our results show that the intensity of the observed signals correlates with the number and duration of the spin–spin interactions between the analytes and the nanoparticles and/or between the analytes and the nanoparticles’ solvation molecules. In turn, these parameters depend on the location and dynamics of each analyte inside the monolayer. This insight will eventually facilitate the tailoring of experimental and computational setups to the analyte’s chemistry, making NMR chemosensing an even more effective technique in practical use.
中文翻译:
纳米颗粒辅助 NMR 化学传感中检测灵敏度的分子机制
纳米颗粒辅助核磁共振 (NMR) 化学传感利用单层保护的纳米颗粒作为超分子主体,通过核奥弗豪塞效应实验检测复杂混合物中的小分子,检测限低至微摩尔范围。尽管如此,人们对基于这种检测极限的结构-敏感性关系知之甚少。在这项工作中,我们整合 NMR 波谱和原子分子动力学模拟来检查影响不同 NMR 化学传感实验灵敏度的协变量 [饱和传递差 (STD)、水 STD 和高功率水介导的 STD]。我们的结果表明,观察到的信号的强度与分析物和纳米颗粒之间和/或分析物和纳米颗粒溶剂化分子之间的自旋-自旋相互作用的数量和持续时间相关。反过来,这些参数取决于单层内每种分析物的位置和动态。这种见解最终将有助于根据分析物的化学性质定制实验和计算设置,使 NMR 化学传感成为实际应用中更有效的技术。
更新日期:2023-07-27
中文翻译:
纳米颗粒辅助 NMR 化学传感中检测灵敏度的分子机制
纳米颗粒辅助核磁共振 (NMR) 化学传感利用单层保护的纳米颗粒作为超分子主体,通过核奥弗豪塞效应实验检测复杂混合物中的小分子,检测限低至微摩尔范围。尽管如此,人们对基于这种检测极限的结构-敏感性关系知之甚少。在这项工作中,我们整合 NMR 波谱和原子分子动力学模拟来检查影响不同 NMR 化学传感实验灵敏度的协变量 [饱和传递差 (STD)、水 STD 和高功率水介导的 STD]。我们的结果表明,观察到的信号的强度与分析物和纳米颗粒之间和/或分析物和纳米颗粒溶剂化分子之间的自旋-自旋相互作用的数量和持续时间相关。反过来,这些参数取决于单层内每种分析物的位置和动态。这种见解最终将有助于根据分析物的化学性质定制实验和计算设置,使 NMR 化学传感成为实际应用中更有效的技术。