当前位置:
X-MOL 学术
›
J. Agric. Food Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
TMT-Based Quantitative Proteomics and Non-targeted Metabolomic Analyses Reveal the Antibacterial Mechanism of Hexanal against Vibrio parahaemolyticus
Journal of Agricultural and Food Chemistry ( IF 5.7 ) Pub Date : 2023-07-27 , DOI: 10.1021/acs.jafc.3c00009 Qiuxia Fan 1 , Xinru Dong 1 , Zewei Wang 1 , Yuan Yue 2 , Yahong Yuan 3 , Zhouli Wang 1 , Tianli Yue 1, 3
Journal of Agricultural and Food Chemistry ( IF 5.7 ) Pub Date : 2023-07-27 , DOI: 10.1021/acs.jafc.3c00009 Qiuxia Fan 1 , Xinru Dong 1 , Zewei Wang 1 , Yuan Yue 2 , Yahong Yuan 3 , Zhouli Wang 1 , Tianli Yue 1, 3
Affiliation
Hexanal is a phytochemical with antimicrobial activity. However, its antibacterial effect and mechanism against Vibrio parahaemolyticus (V. parahaemolyticus) remain unclear. The study aims to elucidate the associated mechanism using tandem mass tag quantitative proteomics and non-targeted metabolomics. Hexanal treatment reduced intracellular ATP concentration, increased membrane permeability, and destroyed the morphology and ultrastructure of V. parahaemolyticus cells. Proteomics and metabolomics data indicated that 572 differentially expressed proteins (DEPs) and 241 differential metabolites (DMs) were identified in hexanal-treated V. parahaemolyticus. These DEPs and DMs were involved in multiple biological pathways including amino acid metabolism, purine and pyrimidine biosynthesis, etc. Bioinformatics analysis revealed that hexanal damaged the structure and function of cell membranes, inhibited nucleotide metabolism, and disturbed carbohydrate metabolism and tricarboxylic acid cycle (TCA) cycle, which ultimately resulted in growth inhibition and bacterial death. The study is conducive to better understand the mode of action of hexanal against V. parahaemolyticus and offers experimental foundation for the application of hexanal as the antibacterial agent in the seafood-associated industry.
中文翻译:
基于TMT的定量蛋白质组学和非靶向代谢组学分析揭示己醛对副溶血弧菌的抗菌机制
己醛是一种具有抗菌活性的植物化学物质。但其对副溶血弧菌(V. parahaemolyticus)的抗菌作用及机制尚不清楚。该研究旨在利用串联质量标签定量蛋白质组学和非靶向代谢组学阐明相关机制。己烷处理降低了细胞内ATP浓度,增加了膜通透性,并破坏了副溶血性弧菌细胞的形态和超微结构。蛋白质组学和代谢组学数据表明,在己醛处理的副溶血性弧菌中鉴定出 572 个差异表达蛋白 (DEP) 和 241 个差异代谢物 (DM) 。这些DEP和DM参与氨基酸代谢、嘌呤和嘧啶生物合成等多种生物学途径。生物信息学分析表明己醛破坏细胞膜的结构和功能,抑制核苷酸代谢,扰乱碳水化合物代谢和三羧酸循环(TCA)。 )循环,最终导致生长抑制和细菌死亡。该研究有利于更好地了解己醛对副溶血弧菌的作用方式,为己醛作为抗菌剂在海产品相关行业的应用提供实验基础。
更新日期:2023-07-27
中文翻译:
基于TMT的定量蛋白质组学和非靶向代谢组学分析揭示己醛对副溶血弧菌的抗菌机制
己醛是一种具有抗菌活性的植物化学物质。但其对副溶血弧菌(V. parahaemolyticus)的抗菌作用及机制尚不清楚。该研究旨在利用串联质量标签定量蛋白质组学和非靶向代谢组学阐明相关机制。己烷处理降低了细胞内ATP浓度,增加了膜通透性,并破坏了副溶血性弧菌细胞的形态和超微结构。蛋白质组学和代谢组学数据表明,在己醛处理的副溶血性弧菌中鉴定出 572 个差异表达蛋白 (DEP) 和 241 个差异代谢物 (DM) 。这些DEP和DM参与氨基酸代谢、嘌呤和嘧啶生物合成等多种生物学途径。生物信息学分析表明己醛破坏细胞膜的结构和功能,抑制核苷酸代谢,扰乱碳水化合物代谢和三羧酸循环(TCA)。 )循环,最终导致生长抑制和细菌死亡。该研究有利于更好地了解己醛对副溶血弧菌的作用方式,为己醛作为抗菌剂在海产品相关行业的应用提供实验基础。