当前位置: X-MOL 学术J. Comb. Theory A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Linear configurations containing 4-term arithmetic progressions are uncommon
Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2023-07-26 , DOI: 10.1016/j.jcta.2023.105792
Leo Versteegen

A linear configuration is said to be common in an Abelian group G if every 2-coloring of G yields at least the number of monochromatic instances of a randomly chosen coloring. Saad and Wolf asked whether, analogously to a result by Jagger, Šťovíček and Thomason in graph theory, every configuration containing a 4-term arithmetic progression is uncommon. We prove this in Fpn for p5 and large n and in Zp for large primes p.



中文翻译:

包含 4 项算术级数的线性配置并不常见

如果G的每个 2 着色至少产生随机选择的着色的单色实例的数量,则称线性配置在阿贝尔群G中是常见的。Saad 和 Wolf 询问,是否与 Jagger、Šťovíček 和 Thomason 在图论中的结果类似,包含 4 项算术级数的每个配置都是不常见的。我们证明了这一点Fpn为了p5和大n和 inZp对于大素数p

更新日期:2023-07-27
down
wechat
bug