我们描述了新的全球陆地水储量数据集GLWS2.0,该数据集包含除格陵兰岛和南极洲外的全球陆地总水储量异常(TWSA),空间分辨率为0.5 \(^\circ \ ),涵盖 2003 年至 2019 年的时间范围,无间隙,并包括每月的不确定性量化。GLWS2.0 是通过集合卡尔曼滤波器将每月 GRACE/-FO 质量变化图同化到 WaterGAP 全球水文模型中而得出的,同时考虑了数据和模型的不确定性。GLWS2.0 中的 TWSA 然后在多个水文存储变量上累积。在本文中,我们描述了 GLWS2.0 中的方法和数据集,它如何与 GRACE/-FO 数据在代表 TWSA 趋势、季节信号和极值方面进行比较,以及通过与 GNSS 比较进行验证导出的垂直载荷及其与 NASA 流域地表模型 GRACE 数据同化 (CLSM-DA) 版本的比较。我们发现,在全球平均超过 1000 个站点中,GLWS2. 与 GRACE/-FO 相比,0 与短期、季节性和长期时间带的 GNSS 垂直载荷观测结果相关性更好。虽然存在一些差异,但总体而言,GLWS2.0 在 TWSA 趋势以及年度幅度和相位方面与 CLSM-DA 相当吻合。强调
-
我们描述了新的全球陆地水储量数据集 GLWS2.0,该数据集包含全球陆地上的总水储量异常,空间分辨率为 0.5 \( ^\circ \),覆盖 2003 年至 2019 年,无间隙,并包含不确定性量化。
-
GLWS2.0 通过 WaterGAP 模型框架综合每月 GRACE/-FO 质量变化图与每日降水量和辐射数据,同时考虑数据和模型的不确定性。
-
在这里,我们从大地测量应用的角度描述了 GLWS2.0 中的方法和数据集及其验证。我们发现,在全球平均水平上,GLWS2.0 比 GRACE/-FO 更适合 GNSS 垂直载荷观测。
"点击查看英文标题和摘要"
The global land water storage data set release 2 (GLWS2.0) derived via assimilating GRACE and GRACE-FO data into a global hydrological model
We describe the new global land water storage data set GLWS2.0, which contains total water storage anomalies (TWSA) over the global land except for Greenland and Antarctica with a spatial resolution of 0.5\(^\circ \), covering the time frame 2003 to 2019 without gaps, and including monthly uncertainty quantification. GLWS2.0 was derived by assimilating monthly GRACE/-FO mass change maps into the WaterGAP global hydrology model via the ensemble Kalman filter, taking data and model uncertainty into account. TWSA in GLWS2.0 is then accumulated over several hydrological storage variables. In this article, we describe the methods and data sets that went into GLWS2.0, how it compares to GRACE/-FO data in terms of representing TWSA trends, seasonal signals, and extremes, as well as its validation via comparing to GNSS-derived vertical loading and its comparison with a version of the NASA Catchment Land Surface Model GRACE Data Assimilation (CLSM-DA). We find that, in the average over more than 1000 stations globally, GLWS2.0 correlates better with GNSS observations of vertical loading at short-term, seasonal, and long-term temporal bands than GRACE/-FO. While some differences exist, overall GLWS2.0 agrees reasonably well with CLSM-DA in terms of TWSA trends and annual amplitudes and phases.Highlights
-
We describe the new global land water storage data set GLWS2.0, which contains total water storage anomalies over the global land with a spatial resolution of 0.5\(^\circ \), covering the period 2003 to 2019 without gaps, and including uncertainty quantification.
-
GLWS2.0 synthesizes monthly GRACE/-FO mass change maps with daily precipitation and radiation data via the WaterGAP model framework, taking data and model uncertainty into account.
-
Here we describe the methods and data sets that went into GLWS2.0 and its validation from a geodetic applications perspective. We find that, in the global average, GLWS2.0 fits better than GRACE/-FO to GNSS observations of vertical loading.